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Abstract
Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of genome- 
wide association study risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine- 
mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of 
annotations.
Results: In this study, we propose a unified method to integrate high-dimensional functional annotations with fine-mapping (Funmap). Funmap 
can effectively improve the power of fine-mapping by borrowing information from hundreds of functional annotations. Meanwhile, it relates the 
annotation to the causal probability with a random effects model that avoids the over-fitting issue, thereby producing a well-controlled false pos
itive rate. Paired with a fast algorithm, Funmap enables scalable integration of a large number of annotations to facilitate prioritizing multiple 
causal single nucleotide polymorphisms. Our comprehensive simulations across a wide range of annotation relevance settings demonstrate 
that Funmap is the only method that produces well-calibrated false discovery rate under the setting of high-dimensional annotations while 
achieving better or comparable power gains as compared to existing methods. By integrating genome-wide association studies of 4 lipid traits 
with 187 functional annotations, Funmap consistently identified more variants that can be replicated in an independent cohort, achieving 
15.5%–26.2% improvement over the runner-up in terms of replication rate.
Availability and implementation: The Funmap software and all analysis code are available at https://github.com/LeeHITsz/Funmap.

1 Introduction
Genome-wide association studies (GWASs) have successfully 
identified hundreds of thousands of single nucleotide poly
morphisms (SNPs) that are statistically associated with com
plex human traits (Uffelmann et al. 2021). However, because 
the true causal variants may be correlated with many non- 
causal variants located in the proximal region (Slatkin 2008) 
due to linkage disequilibrium (LD), it remains very difficult 
to distinguish the causal SNPs from non-causal ones in 
GWAS discoveries. To address this issue, fine-mapping 
(Schaid et al. 2018) is employed to prioritize the set of var
iants that are most likely to be biologically associated with a 
target trait while accounting for the local LD pattern within 
each genetic locus identified by GWAS. By offering a set of 
putative causal SNPs that are potentially responsible for pa
thology of complex human diseases, fine-mapping outputs 
can serve as valuable resources for in-depth exploration to in
terpret disease etiology.

A number of fine-mapping methods have been developed to 
prioritize causal variants based on GWAS data. Early methods 
for fine-mapping (Hormozdiari et al. 2014, Kichaev et al. 
2014) rely on an exhaustive search for combinations of causal 
SNPs, making them computationally inefficient in identifying 

multiple causal SNPs. Later, some methods employ approxi
mate algorithms to reduce the computational cost of searching 
causal variants (Chen et al. 2015, Benner et al. 2016, Wen 
et al. 2016, Lee et al. 2018). More recently, SuSiE (Wang et al. 
2020, Zou et al. 2022) proposes an efficient fine-mapping 
framework by decomposing causal signals into a sum of single 
causal effects. Despite the great advances in fine-mapping, it 
remains a major challenge to reliably prioritize causal SNPs 
when they are in strong LD with non-causal ones.

Fortunately, functional annotations can serve as auxiliary 
information to inform the prioritization of causal SNPs. This 
is granted by the fact that biologically important SNPs are 
more enriched within functionally important annotations 
across the genome. For example, a fine-mapping analysis 
across 14 traits reported that putative causal SNPs were sig
nificantly enriched in functional regions, including nonsynon
ymous regions, conserved regions, and multiple cell-type- 
specific regulatory regions (Weissbrod et al. 2020).

An expanding amount of annotation resources is becoming 
available to facilitate genetic studies. The Encyclopedia of 
DNA Elements (ENCODE) project (Consortium et al. 2012) 
has generated a comprehensive mapping between functional 
elements and variants covering 80% of the genome, including 
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open chromatin sites, histone mark enriched regions, and 
transcription factor binding regions, etc. The NIH Roadmap 
Epigenomics Mapping Consortium (Kundaje et al. 2015) has 
established high-quality, genome-wide maps of epigenomic 
regulatory elements across hundreds of human cell types and 
tissues, such as key histone modifications, chromatin accessi
bility, DNA methylation, and mRNA expression. Although 
the rich annotation resources hold promise to enhance fine- 
mapping, it requires handling high-dimensional annotation 
data, which hampers the effective integration of functional 
annotations. The difficulties are 2-fold. First, a large number 
of model parameters is required to characterize the relation
ship between annotations and the causal status of candidate 
SNPs. These parameters need to be estimated with GWAS 
data of only a few thousand correlated SNPs from a single ge
nomic region, making the parameter estimation highly unreli
able, thereby producing false positive results. Second, when 
the number of annotations grows large, it is computationally 
challenging to simultaneously search for multiple causal var
iants and estimate model parameters of high-dimensional 
annotations.

Much effort has been devoted to integrating functional anno
tations with GWAS data for fine-mapping. fastPAINTOR 
(Kichaev et al. 2017) can integrate multiple functional anno
tations with summary statistics by leveraging the approach of 
Markov chain Monte Carlo (MCMC). However, due to the 
lack of feature selection to filter out unrelated annotations, 
fastPAINTOR may incur a high false discovery rate (FDR) 
when dealing with high-dimensional functional annotations. 
To address this issue, PolyFun (Weissbrod et al. 2020) pro
poses to first estimate prior weights based on functional 
annotations and GWAS summary statistics, and then perform 
other fine-mapping methods with these estimated prior 
weights. Because the two-step design of PolyFun does not 
maximize the joint-likelihood function, it usually has subop
timal statistical power. CARMA (Yang et al. 2023) attempts 
to improve existing methods by incorporating high- 
dimensional functional annotations via a penalized logistic 
regression, allowing for more reliable integration of summary 
data and high-dimensional functional annotations. However, 
CARMA’s algorithm alternates between a sampling proce
dure to explore the posterior distributions and fitting an elas
tic net to estimate annotation weights that involve a cross- 
validation step, making its time complexity relatively high as 
the number of candidate SNPs increases. Very recently, 
SparsePro (Zhang et al. 2023) extends SuSiE by allowing the 
prior causal probabilities to be linked to binary functional 
annotations. Nevertheless, similar to PolyFun, the process of 
computing prior weights and fitting the SuSiE model in 
SparsePro is separated, and the functional annotations used 
in SparsePro are restricted to binary types.

In this article, we propose a unified method to integrate 
high-dimensional functional annotations with GWAS data to 
improve fine-mapping (Funmap). The success of Funmap 
relies on its three unique features. First, it effectively improves 
the power of fine-mapping by fully utilizing the information 
of high-dimensional functional annotations. Second, it relates 
the high-dimensional functional annotation to the prior 
causal probability with a random effects model that avoids 
the over-fitting issue, thereby producing a well-controlled 
FDR. Third, paired with a fast variational Bayes algorithm, 
Funmap enables scalable integration of a large number of 
annotations to facilitate prioritizing multiple causal SNPs. 

With comprehensive simulation studies, we show that 
Funmap is the only method that produces well-calibrated 
FDR under the setting of high-dimensional annotations while 
achieving better or comparable power gains as compared to 
existing fine-mapping methods, especially when only a subset 
of annotations is informative. We applied Funmap to priori
tize causal SNPs of 4 lipid traits by integrating their GWAS 
data with 187 functional annotations. Our results suggest 
that Funmap not only boosts the statistical power by fully 
leveraging the auxiliary evidence of function annotations but 
also substantially improves the reproducibility of putative 
causal SNPs, indicating its effectiveness in reducing false posi
tives. Furthermore, we demonstrate that Funmap’s unique 
annotation importance measure provides valuable insights on 
how the functional annotations facilitate the mapping of 
causal variants, offering a deeper understanding of biological 
mechanisms underlying complex phenotypes.

2 Materials and methods
2.1 The Funmap model
We begin the formulation of Funmap with the individual level 
GWAS data. Consider the GWAS dataset fX;yg, where X 2
Rn×p is the genotype matrix of n individuals and p SNPs of the 
target region, and y 2 Rn is the phenotype vector. Without loss 
of generality, we assume that each column of X and y has been 
standardized to have zero mean and unit variance. We also as
sume that the covariates, such as gender, age, and genotype 
principal components, have been properly adjusted following 
our previous works (Cai et al. 2021). We relate the phenotype 
y to genotypes X with the following linear model: 

y ¼ Xbþ e; (1) 

where b 2 Rp is the sparse vector of SNP effect sizes, the inde
pendent noise e�Nð0;σ2InÞ, and In is the n by n identity ma
trix. To identify the non-zero entries of b, we consider the 
following sum-of-single-effects (Wang et al. 2020) structure: 

b ¼
XL

l¼1

γlbl; γl �Multð1; πlÞ; bl � Nð0; σ2
blÞ; (2) 

where γl ¼ ½γl1; . . .; γlp�
T
2 f0;1gp is a binary vector with γlj ¼ 1 

indicating the lth causal signal is attributed to the jth SNP, bl is 
the effect size of the lth causal signal, and πl ¼ ½πl1; . . .;πlp�

T is 
the vector of prior causal probabilities with 

Pp
j¼1 πlj ¼ 1.

Suppose that besides the GWAS data, we also collected 
the functional annotations of the target SNPs. Let A¼
½A1; . . .;Ap�

T
2 Rp×m be the matrix collecting m annotations 

of the p SNPs. With the availability of rich functional annota
tions, m is becoming increasingly large (e.g. m≥100). To ef
fectively incorporate the functional annotation as auxiliary 
evidence for causal SNP prioritization, we link the prior 
probability πl to SNP annotations with the following softmax 
model with random effects: 

πlj ¼
eAT

j wl

Pp
j0¼1 eAT

j0wl
; wl � Nð0; σ2

wlImÞ; (3) 

where wl 2 Rm represents the random effects vector of anno
tations on the causal probability of the lth single-effect com
ponent. Unlike previous methods (Kichaev et al. 2017, Zhang 
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et al. 2023) that assume a fixed annotation effect shared across 
single-effect components, we propose a component-specific ran
dom effects assumption on the annotation weights wl. This as
sumption has two salient properties. First, it allows the 
annotation weights to vary across causal signals, which better 
characterizes the real genetic architecture. Second, built upon a 
random effects model, when dealing with high-dimensional 
functional annotation A, Funmap can adaptively estimate the 
annotation weights wl from the data while shrinking those of 
redundant annotations to avoid over-fitting, thereby effectively 
reducing false positive results.

Under Equations (1–3), we denote the model parameters 
as θ :¼ fσ2;σ2

b1; . . .;σ2
bL;σ

2
w1; . . .;σ2

wLg and the collections 

of random variables ~b :¼ fb1; . . . ;bLg, ~γ :¼ fγ1; . . . ;γLg, 
and ~w :¼ fw1; . . . ;wLg. The logarithm of the marginal 
likelihood is given as logPrðyjX;A; θÞ ¼ log

P
~γ
Ð

~b

Ð

~wPrðy; ~b;

~γ; ~wjX;A; θÞd ~wd~b. By maximizing the log-likelihood, we aim 
to obtain parameter estimates bθ and prioritize the causal 
SNPs by using the posterior probability: 

Pr ~γ; ~b; ~wjy;X;A;bθ
� �

¼
Pr ~γ; ~b; ~w; yjX;A;bθ
� �

Pr yjX;A;bθ
� � : (4) 

2.2 Algorithm and parameter estimation
The major challenge to evaluating Equation (4) is the intrac
table marginal likelihood on the denominator. First, it is diffi
cult to exactly evaluate the integration of Prð~b;~γj~w;A; θÞ due 
to the softmax function. Second, the sum-of-single-effects as
sumption makes it intractable to integrate over ~γ. To address 
the above issues, we develop a variational inference algorithm 
that can efficiently estimate model parameters and approxi
mate the posterior distribution.

We first deal with the intractability resulting from the soft
max function. Here, we consider the following bound based 
on double majorization (Bouchard 2007): 

Xp

j0¼1

eAT
j0wl ≤ exp½ρlþ

Xp

j0¼1

AT
j0 wl − ρl − ξlj0

2
þ

λðξlj0 ÞððA
T
j0 wl − ρlÞ

2 − ξ2
lj0 Þ þ logð1þ eξlj0 Þ�;

(5) 

where λðξlj0 Þ ¼
1

2ξlj0
1

1þ e
−ξlj0

− 1
2

� �
, ξlj0 2 ½0;1Þ, and ρ 2 R. 

Clearly, the right-hand side of this inequality is in the expo
nentiated quadratic form. Therefore, applying this inequality 
to the denominator of the softmax function (3) leads to a 
tractable bound gð~b;~γj~w;A; ξ;ρ;θÞ≤Prð~b;~γj~w;A; θÞ, where 
ξ¼ ½ξ�lj 2 ½0;1Þ

L×p and ρ¼ ½ρ1; . . .;ρL�
T
2 RL are variational 

parameters that can be estimated from the data (see details in 
Supplementary Note S1). Let Θ¼ fθ; ξ;ρg. We can obtain a 
lower bound of complete-data likelihood as: 

Prðy; ~b;~γ; ~wjX;A; θÞ≥Prðyj~b;~γ; ~w;X; θÞgð~b;~γj~w;A; ΘÞPrð~wjθÞ
� f ðy; ~b;~γ; ~wjX;A; ΘÞ:

(6) 

Based on the above bound, we further derive a lower bound 
of the logarithm of marginal likelihood 

log PrðyjX;A; θÞ ¼ log
P

~γ
Ð

~b

Ð

~wPrðy; ~b;~γ; ~wjX;A; θÞd ~w d~b

≥ log
P

~γ
Ð

~b

Ð

~w f ðy; ~b;~γ; ~wjX;A; ΘÞd ~w d~b

≥
P

~γ
Ð

~b

Ð

~wqð~b;~γ; ~wÞ log
f ðy; ~b;~γ; ~wjX;A; ΘÞ

qð~b;~γ; ~wÞ
d ~w d~b

¼ Eq½log f ðy; ~b;~γ; ~wjX;A; ΘÞ− log qð~b;~γ; ~wÞ� � Fðq;ΘÞ;
(7) 

where the first inequality follows the double majorization 
bound, the second inequality is granted by Jensen’s inequality, 
and qð~b;~γ; ~wÞ is an approximation of the exact posterior (4). 
To analytically evaluate the lower bound, we introduce the 
following factorizable mean-field formulation assumption: 

qð~b;~γ; ~wÞ ¼
YL

l¼1

qlðbl; γl;wlÞ ¼
YL

l¼1

qlðbl; γlÞqlðwlÞ; (8) 

where qlðbl; γlÞ ¼ qðbljγlÞqðγlÞ. The above approximation can 
be obtained in closed form, which allows the lower bound to 
be analytically evaluated. Besides, by taking advantage of the 
sum-of-single-effects decomposition, this mean-field assump
tion inherits the property of SuSiE that only requires the L 
causal signals to be independent, relaxing the assumptions in 
traditional variational approximations (Guan and Stephens 
2011, Carbonetto and Stephens 2012). We develop a varia
tional inference algorithm that can efficiently estimate θ and 
evaluate qð~b;~γ; ~wÞ by iteratively maximizing the lower bound 
(7) under assumption (8).

To improve the convergence of the variational algorithm, 
we design a three-stage model fitting process with warm- 
starts. This is built upon the knowledge that Funmap covers 
the SuSiE model as a special case when all the annotation 
effects ~w ¼ 0. In the first stage, we fit the SuSiE model using 
our Funmap implementations without incorporating annota
tions, obtaining an initial estimate of parameters 
σ2;σ2

b1; . . . ;σ2
bL and the posterior distribution qð~b;~γÞ. Then, 

we use these estimates to initialize the second stage where the 
variational algorithm is executed to evaluate the posterior 
distributions of ~w. In this stage, we fix ~γ at its posterior mean 
obtained in the first stage to produce rough estimates of 
annotation-related parameters σ2

wl and qð~wÞ. Finally, we use 
the estimated parameters from the second stage as the initial 
values to run the variational algorithm with the full 
Funmap model.

The Funmap fitting procedure possesses several appealing 
computational and practical convenience. Computationally, 
since the three fitting stages are constructed under a unified 
variational framework, the lower bound is guaranteed to in
crease at each stage, enabling a more stable convergence of 
the Funmap algorithm. Practically, it avoids the need to spec
ify the number of causal variants. Specifically, when the num
ber of causal SNPs is unknown, we can simply set L to a 
reasonably large number. The excessive components of 
Funmap will be assigned small posterior probabilities. This 
property can be attributed to two facts. Firstly, at the first 
stage, excessive components will be broadly assigned to all 
SNPs across the locus due to the high uncertainty in allocat
ing their causal effects (Wang et al. 2020). Secondly and im
portantly, the warm-start procedure can prevent the 
excessive components from being enlarged by over-fitting the 
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high-dimensional annotations. We provide the details of our 
algorithm in the Supplementary Note S1.

2.3 Funmap with GWAS summary data
While the variational inference algorithm proposed above is 
for individual-level genotype X and phenotype y, it can be 
easily extended to using only GWAS summary data as input. 
Let us consider the z-scores obtained from marginal 
regressions: 

zj ¼
bβj

bsj
; where bβj ¼ xT

j xj

� �− 1
xT

j y; bsj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjy − xjbβjjj
2
2

nxT
j xj

v
u
u
t ; (9) 

and xj 2 Rp is the jth column of X. We first note that the like
lihood and its lower bound (7) depend on the GWAS data 
fX;yg only through the sufficient statistics XTX, XTy, and 
yTy. Since both X and y have been standardized, we can re
place the sufficient statistics with z-scores and LD matrix R 
(Wang et al. 2020) with the following relationships: 

XTX ¼ nR; xT
j y ¼

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ z2

j

q zj; yTy ¼ n; (10) 

where R can be computed with genotypes from a subset of 
GWAS samples or from a reference panel of similar ancestry 
background. In our software implementation, all the opera
tions are based on sufficient statistics, allowing us to accom
modate both individual-level and summary-level GWAS data.

2.4 Identification of causal SNPs
After the convergence of Funmap algorithm, we can obtain the 
approximate component-specific posterior probabilities qðγlÞ, 
where qðγlj ¼ 1Þ represents the probability that jth SNP is re
sponsible for the lth causal signal. With this information, we 
can compute the posterior inclusion probability of the jth SNP 
as PIPðjÞ ¼ Prðγlj 6¼ 0 for some ljX;y;bθÞ � 1 −

QL
l¼1ð1 −qðγlj ¼

1ÞÞ. Then, the local FDR for each SNP can be calculated as 
fdrðjÞ ¼ 1 − PIPðjÞ; j¼ 1; . . . ;p. To control the global, we sort the 
local FDRs in ascending order. We denote the ith sorted local 
FDR as fdrðiÞ and compute the global FDR as FDRðjÞ ¼
Pj

i¼1
fdrðiÞ

j . If FDRðjÞ is lower than a given FDR threshold η, we 
consider the SNP as a putative causal SNP.

2.5 Importance score of functional annotations
To evaluate the relative importance of functional annotations 
in facilitating fine-mapping, we define a feature importance 
score based on the posterior distribution of the annotation 
weights wl. For the jth annotation, its feature importance FIj 
is defined as: 

FIj ¼ max
l

μ2
wlj; (11) 

where μwlj is the posterior mean of the jth annotation weight 
in the lth component (see details in Equation (26) of the 
Supplementary Note S1). This definition captures the stron
gest evidence of annotation relevance across all components, 
as each component may have different relevant functional 
annotations under Funmap’s component-specific random 
effects design. Based on these importance scores, annotations 

can be ranked and prioritized, with top-ranked ones (e.g. top 
5% or 10%) considered potentially relevant.

3 Results
3.1 Simulation
We conducted comprehensive simulations to evaluate the 
performance of Funmap using real genotypes obtained from 
the UK Biobank (UKBB) project (Bycroft et al. 2018). First, 
we obtained genotypes of UKBB White British individuals 
with sample sizes n¼ 20000 and 50000. To mimic the realis
tic genetic architectures of disease-related loci, we considered 
10 risk regions identified in GWAS as associated with breast 
cancer (Fachal et al. 2020), where each region comprises ap
proximately (Fachal et al. 2020), where each region com
prises approximately p¼ 700� 4200 variants 
(Supplementary Table S1). The functional annotations Ajk of 
these SNPs were sampled from a standard normal distribu
tion for j¼ 1; . . .;p and k¼ 1; . . .;m. We varied the number of 
annotations m among f20;50;100g to cover the cases 
from low to high dimensional settings. Then, we constructed 
the effects of functional annotations w 2 Rm with wk �

Nð0;0:01Þ for k¼ 1; . . .;m, where each annotation only has a 
small impact on the causal probability. Next, we simulated 
the causal probabilities with the softmax function 

πj ¼
e

AT
j

w

Pp

j0¼1
e

AT
j0

w
. We selected L0 SNPs as the true causal SNP 

which has the highest values of πj and pairwise correlation 
less than 0.1 following previous studies (Yang et al. 2023, 
Zhang et al. 2023). We considered L0 ¼ 2 and L0 ¼ 3 to fo
cus on scenarios where a locus harbours multiple causal var
iants. Given the causal status, we followed previous studies 
(Wang et al. 2020) to sample the effect sizes of causal SNPs 
b0 2 RL0 from Nð0;0:0075=L0 � IL0Þ, where 0.0075 is the her
itability contributed by the target region. With the standard
ized genotype matrix of causal SNPs X0 2 Rn×L0 , we 
generated the phenotype values with y¼X0b0þ e, where 
e�Nð0; 1− 0:0075

0:0075 VarðXb0Þ � InÞ. Finally, we performed uni
variate linear regressions on each SNP to obtain their 
z-scores. For each setting, we repeated the experiment for 
50 times across the 10 regions, yielding 500 replicates. All the 
setting parameters and results are in Supplementary Figs 
S1–S30.

In our simulation analysis, we benchmarked the perfor
mance of Funmap by comparing it with five representative 
fine-mapping methods. For methods that do not use func
tional information, we considered SuSiE (Wang et al. 2020), 
CARMA (Yang et al. 2023), and PAINTOR (Kichaev et al. 
2017). For methods that use functional information, we con
sidered the extensions of CARMA and PAINTOR for inte
grating functional annotations, denoted as “CARMAþanno” 
(Yang et al. 2023) and “PAINTORþanno” (Kichaev et al. 
2017), respectively. The number of components L for SuSiE 
and Funmap was set to 10, with no more than 100 iterations 
per stage. The expected number of causal SNPs (η) for 
CARMA and CARMAþanno was also set to 10, and the 
maximum number of iterations was set to 10 for both outer 
and inner loops. For PAINTOR and PAINTORþanno, we 
used the fastPAINTOR implemented in the PAINTOR soft
ware v3.0 by adding the “-mcmc” flag.

We first assessed the FDR calibration of the compared 
methods. Specifically, we calculated the global FDR defined 
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and identified a set of putative causal SNPs with an 
expected FDR threshold. Given the putative causal SNPs, 
the empirical FDR can be computed as eFDR¼ 1 − 
NO: of true causal SNPs among putative causal SNPs

NO: of putative causal SNPs . The eFDR of a 
well-calibrated fine-mapping method should be close to the 
expected FDR level. Figure 1a and b show the eFDR against 
the expected FDR when n¼ 50000 and L0 ¼ 2. Clearly, all 
methods without annotation had well-controlled FDR across 
different thresholds. Funmap consistently achieved satisfac
tory performance across different numbers of annotations, 
suggesting its ability to handle high-dimensional annotations 
through the random effects model. By contrast, due to the 
fixed effect assumption on annotation weights, 
PAINTORþanno exhibited severely inflated FDR, which was 

exacerbated as the number of annotations increased. 
Although CARMAþanno could also regularize the annota
tion weights by fitting an elastic net, its FDR was still inflated 
when there was a large number of annotations (m≥50). This 
may be attributed to the lack of a warm-start procedure in 
CARMA’s algorithm, which leads to local optimal solutions. 
To illustrate the differences between the performance of com
pared methods more intuitively, we visualized the results of 
one dataset from our simulation experiments with 
Manhattan plots (Fig. 1c). We can see that in this example, 
the two causal SNPs are much more significant than those of 
the surrounding SNPs due to the weak LD. Given this evi
dence, it is relatively easy to prioritize the causal SNPs in this 
dataset. Indeed, the causal SNPs could be reliably identified 

Figure 1. Comparison of FDR control in simulation studies. (a, b) Calibration of FDR with n ¼ 50000; m ¼ 100, while the number of causal SNPs is set to 
L0 ¼ 2 (a) and L0 ¼ 3 (b). Results are summarized from 500 replications across 10 regions. (c). An illustrative example generated by simulation. The first 
column shows the absolute correlation among the two candidate causal SNPs and their neighboring SNPs and the Manhattan plot. The second to fourth 
columns show the PIP obtained by with compared methods. Red dots represent causal SNPs. Dots with the same color of outline represent SNPs in the 
level-95% credible sets of a causal signal.
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without the functional information. However, after incorpo
rating functional annotations, CARMAþanno and 
PAINTORþanno produced a number of false positive results. 
PINTORþanno created four false positive signals with PIP 
>0.9. CARMAþanno also incorrectly assigns a high PIP 
(>0.8) to three non-causal SNPs. By contrast, Funmap effec
tively avoided false positive findings and yielded results simi
lar to SuSiE. This observation implies the effectiveness of 
using Funmap’s random effects model to adaptively incorpo
rate functional information in high-dimensional settings.

Next, we considered a set of common PIP thresholds 
f0:90;0:95;0:99g to evaluate the statistical power of com
pared methods. As shown in Fig. 2a and b, by incorporating 
functional annotation information, the statistical power of 

Funmap, CARMAþanno, and PAINTORþanno outper
formed their counterparts without annotations. The statisti
cal power of Funmap was higher than CARMAþanno when 
stringent PIP thresholds (PIP>0.99 and PIP>0.95) were ap
plied and comparable to CARMAþanno under a less strin
gent PIP threshold (PIP4>0.9). Although PAINTORþanno 
produced the highest power in most settings, it is worth not
ing that its FDR can be strongly inflated when the number of 
annotations is large, making it difficult to replicate and inter
pret the discoveries. A concrete example with m¼ 100 and 
L0 ¼ 2 is given in Fig. 2c, where the two causal SNPs are in 
strong LD with neighboring SNPs. SuSiE and CARMA pro
duced a PIP of around 0.8 for the causal SNPs, while 
PAINTOR’s PIP failed to exceed 0.4. Despite the strong LD, 

Figure 2. Comparison of statistical power in simulation studies. (a, b) Statistical power of compared methods with n ¼ 50000; m ¼ 100 while the number 
of causal SNPs is set to L0 ¼ 2 (a) and L0 ¼ 3 (b). (c) An illustrative example generated by simulation.
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Funmap successfully elevated the PIP of causal SNPs to 1.0 
by utilizing the functional information. In contrast, 
CARMAþanno remained largely unchanged and 
PAINTORþanno incorrectly assigned high PIP to a non- 
causal SNP, yielding a false positive result. This example indi
cates that even in the presence of strong LD, traditional meth
ods can have limited power, whereas Funmap can still 
effectively improve statistical power by leveraging the func
tional information while controlling FDR. To gain further in
sight into the difference in fine-mapping performance, we 
contrasted the PIP obtained by Funmap against those 
obtained by other methods (Fig. 3a and b). It is clear that the 
PIP of causal variants produced by Funmap was substantially 
larger than those produced by SuSiE and CARMAþanno, in
dicating Funmap’s better ability to pinpoint the causal SNPs. 
As a comparison, PAINTORþanno identified more causal 

SNPs with a cost of producing many false positives. This is in 
line with our observation of inflated FDR yielded by 
PAINTORþanno. Besides the PIP for SNP-level inference, 
Funmap also provides a set of candidate SNPs for each causal 
signal, denoted as “credible set.” A level-δ credible set 
includes a subset of SNPs that are responsible for a single- 
effect component with a joint probability of δ. Given a cover
age level δ, a smaller credible set indicates a lower uncertainty 
to assign the causal signal and hence higher resolution of 
fine-mapping. We summarized the size of level-95% credible 
sets in Fig. 3d. As expected, Funmap yielded the smallest 
credible sets, suggesting its higher resolution.

To evaluate the computational efficiency of our model, we 
benchmarked the CPU time of compared methods by varying 
the number of variables and the number of functional anno
tations. We first focused on loci with the number of SNPs 

Figure 3. Comparison of PIP and CPU timings. (a, b). Comparison of PIP between Funmap and SuSiE (left panel), CARMAþanno (middle panel), and 
PAINTORþanno (right panel) with n ¼ 50000;m ¼ 100, while L0 is varied at 2 (a) and 3 (b). (c) CPU timings are shown for increasing p with m ¼ 100 (left 
panel) and increasing m with p ¼ 1833. (d) Boxplot displays the size of the 95% credible sets from the simulation results 
with n ¼ 50000;m ¼ 100;L0 2 f2;3g.
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p 2 f854;1313;1833;2561;4107g, while fixing the number 
of functional annotations at m¼ 100. Figure 3c shows the 
CPU time of all compared methods. As we can observe, 
Funmap achieved a great computational efficiency among 
methods capable of integrating functional annotation, with a 
CPU time substantially faster than CARMAþanno. While 
SuSiE was the fastest method, it could not integrate high- 
dimensional annotations to improve fine-mapping. The right 
panel of Fig. 3c compares the running times under different 
numbers of annotations m 2 f10;50;100;150;200g with the 
number of SNPs fixed at p¼ 1833. Overall, CARMAþanno 
had the largest computational overhead, with an average CPU 
time ranging between 10 and 16minutes. Funmap achieved the 
least computing time when m≤100 and only had a marginal 
increase when m exceeds 150. Although PAINTORþanno had 
CPU times comparable Funmap, it is not suitable to integrate 
high-dimensional annotations due to inflated FDR.

To assess the robustness of Funmap when our assumption 
of annotation effects is violated, we conducted a series of ad
ditional simulations that consider the sparse annotation 
weights. We varied the number of relevant annotations at 50, 
10, 5, and 1 out of 100 annotations while keeping others ir
relevant, corresponding to sparsity levels of 50%, 10%, 5%, 
and 1%, respectively. As shown in Supplementary Figs S31– 
S66, Funmap consistently produced better controlled FDR 
across all settings of sparsity levels, highlighting its robust
ness to the model mis-specification. In contrast, CARMA and 
PAINTOR had inflated the FDR regardless of the proportion 
of relevant annotations. Across all settings of annotation rele
vance, Funmap achieved better or comparable statistical 
power as compared to PAINTOR and CARMA. This pattern 
indicates that Funmap can adaptively integrate useful func
tional information to enhance statistical power while main
taining FDR control across a wide range of annotation 
relevance. In addition, to investigate whether Funmap cor
rectly integrated the relevant annotations in the sparse set
ting, we compared the annotation selection performance 
Funmap with PAINTOR using their feature importance 
scores. CARMA was excluded from this analysis because its 
software does not provide annotation weight estimates or 
feature importance measures. We ranked annotations by im
portance scores and treated the top-ranked annotations as 
relevant with percentage thresholds of 5%, 10%, 20%, and 
50%. The comparison was based on two metrics: statistical 
power, defined as the ratio of the number of relevant annota
tions included in the top-ranked group to the total number of 
relevant annotations, and the false positive rate (FPR), com
puted as the ratio of the number of relevant annotations in
cluded in the top-ranked group to the total number of 
irrelevant annotations. As shown in Supplementary Figs S67– 
S82, Funmap demonstrated superior performance, particu
larly in sparse settings where relevant annotations were rare 
(1% of total annotations). While both methods showed de
creased power as the proportion of relevant annotations in
creased, Funmap consistently outperformed PAINTOR in 
terms of statistical power across all settings while maintain
ing comparable FPR, suggesting that Funmap can better dis
tinguish relevant annotations from irrelevant ones to 
facilitate the identification of causal variants.

3.2 Real data analysis
We applied Funmap to identify causal SNPs for four lipid- 
related traits including high-density lipoprotein (HDL), 

low-density lipoprotein (LDL), triglycerides (TG), and total 
cholesterol (TC). The GWAS summary data were collected 
from 315 133 UKBB individuals of European ancestry. 
To construct candidate genomic regions for fine-mapping, we 
first identified genome-wide significant associations 
(P–values<5×10− 8) for each trait. Then, we extracted a 
1-Mbp window centering at each genome-wide significant 
SNP. In total, we obtained 864 genomic regions (190–347 
per trait) with 434–8646 SNPs per region across the four 
traits. To avoid spurious results as reported by previous stud
ies (Weissbrod et al. 2020), we excluded the region of major 
histocompatibility complex (25.5 Mbp–33.5 Mbp in chromo
some 6) and two regions with long-range LD (8 Mbp–12 
Mbp in chromosome 8 and 46 Mbp–57 Mbp in chromosome 
11). We followed previous studies (Weissbrod et al. 2020) to 
use 187 functional annotations from the Baseline-LF v2.2. 
UKB annotations (Gusev et al. 2014). Rather than being spe
cifically focused on lipid-related functions, these annotations 
represent a systematic collection of genomic and functional 
features, encompassing a broad spectrum of functional ele
ments, including coding regions, conserved elements, regula
tory features, minor allele frequency (MAF) distributions, 
and LD-related characteristics, which have been demon
strated to be informative for various complex traits 
(Weissbrod et al. 2020). During the fine-mapping process, we 
considered one genomic region at a time, using the GWAS 
marginal z-scores, in-sample LD correlation matrices, and the 
functional annotations of local SNPs as inputs for all meth
ods. We recorded the PIPs and credible sets for each genomic 
region. We used the same parameter settings as those used in 
simulation studies for Funmap, SuSiE, and PAINTOR. For 
CARMA, we set the maximum number of iterations to four 
for both inner and outer loops.

We summarized the putative causal SNPs in 
Supplementary Table S2. By integrating functional annota
tions, Funmap successfully identified more SNPs than SuSiE, 
PAINTOR, and CARMA across different PIP thresholds. 
Although PAINTORþanno and CARMAþanno reported 
more causal SNPs than Funmap, our simulation analyses sug
gest that their discoveries may be unreliable due to the large 
number of annotations. To assess the credibility of our fine- 
mapping results, we extracted the set of SNPs that were 
reported as causal by each functionally informed method but 
not by SuSiE with a PIP threshold of 0.95. Then, we evalu
ated the replication rates of these newly identified SNPs using 
independent multi-ancestry GWASs from the Global Lipids 
Genetics Consortium (GLGC) (Graham et al. 2021), which 
comprised up to 900K samples across the four traits. The 
credible sets in this replication cohort were computed by 
SuSiE using meta-analyzed multi-ancestry data, yielding a 
highly reliable set of putative causal SNPs. Therefore, we can 
use the GLGC data as a high-quality resource to validate the 
fine-mapping results in our UKBB analysis. We evaluated the 
replication rates with two quantities: the proportion of new 
discoveries that were genome-wide significant (P-value 
<5×10− 8) and the proportion of new discoveries included 
in the credible sets in GLGC cohort. As summarized in Fig. 4, 
Funmap consistently yielded the highest replication rates 
across the four traits, with >50% of new discoveries success
fully replicated in HDL, LDL, and TC in terms of genome- 
wide significance. Among the three methods that integrate 
functional annotations, PAINTORþanno detected 1110 new 
associations with HDL that were not reported by SuSiE. 
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However, only 17:8% ð198=1110Þ were genome-wide 
significant, and 3:5% ð39=1110Þ were included in the 
credible sets of GLGC cohort. Although CARMAþanno had 
better replication performance than PAINTORþanno, only 
31:5% ð198=629Þ new discoveries were genome-wide signifi
cant in GLGC, meaning that more than half of its new dis
coveries could not be replicated. The low replication rates 
suggest that many new discoveries could be false positives 
due to the integration of high-dimensional annotations. By 
introducing the random effects model, Funmap substantially 
improved the replication rates. For example, in terms of 
genome-wide significance, 53:3% ð202=379Þ new SNPs 
reported by Funmap were successfully replicated. Besides, 
16:7% ð34=203Þ of Funmap’s new discoveries were included 
in the GLGC credible sets, which was 2.5 times higher than 
CARMAþanno and 4.8 times higher than PAINTORþanno. 
It is worth noting that the number of Funmap’s new discover
ies replicated by GLGC credible sets was consistently higher, 
implying a greater statistical power. Meanwhile, the number 
of non-replicated SNPs was substantially reduced, indicating 
that many false positives were excluded. This pattern was 
consistent across the four traits. Therefore, the higher replica
tion rates of Funmap can be attributed to both improved 
power and reduced false positives by properly integrating the 
high-dimensional annotations.

Funmap not only improved the replication rates but also 
enhanced the fine-mapping resolution in the lipid traits analy
sis. As observed in Fig. 5a, Funmap created the smallest credi
ble sets among all compared methods, with a median size of 
one across the four traits. This observation was consistent 
with our simulation studies. As an example, we focus on the 
locus 6-7Mb in Chromosome 8, which harbours the SNP 

rs2928176 fine-mapped for TC only by Funmap (PIP¼1.0). 
This SNP locates on the 2Kb upstream of AGPAT5, encoding 
an integral membrane protein of the 1-acylglycerol-3-phos
phate O-acyltransferase family (Strembitska et al. 2022). 
This enzyme is responsible for converting lysophosphatidic 
acid to phosphatidic acid, serving as a critical step of de novo 
phospholipid biosynthesis. The SNP correlation heatmap 
(top left panel in Fig. 5b) in this region shows that multiple 
SNPs around rs2928176 are in strong LD, making them 
highly significant with very similar P-values (bottom left 
panel in Fig. 5b). Therefore, traditional fine-mapping meth
ods lacking the ability to integrate functional information 
could not reliably prioritize the causal SNP in this region. 
Indeed, SuSiE produced a very large 95% credible set com
prising 41 SNPs, with the largest PIP only attaining 0.217. 
CARMA and PAINTOR generated credible sets of similar 
sizes. By incorporating the functional information, Funmap 
uniquely identified rs2928617 as the causal SNP with 
PIP¼ 1, producing a high-resolution credible set that only 
includes rs2928617. By contrast, CARMAþanno yielded 
three credible sets with sizes of one and two, which was sus
picious as there is no strong evidence of three independent 
causal signals in this region. While PAINTORþanno elevated 
the highest PIP to 0.8 and slightly reduced the size of the cred
ible set, it failed to include rs2928617. This example consoli
dates our conclusion of Funmap’s ability to improve power 
and resolution by incorporating high-dimensional functional 
annotations.

To gain insight into how and which annotations are con
tributing to the improved performance of fine-mapping, we 
conducted a comprehensive assessment of feature importance 
across all four lipid traits. We visualized the distribution of 

Figure 4. Replication analysis of Funmap, CARMAþanno, and PAINTORþanno. Bar charts on the top shows the fraction and number of newly identified 
SNPs with P-value <5×10− 8 in the replication cohorts of GLGC GWAS. Bar charts on the bottom shows the fraction and number of newly identified 
SNPs that are included in the 95%-level credible sets generated from GLGC GWAS with SuSiE.
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feature importance scores for each annotation across all 
causal signals through box plots. In Supplementary Figs S83– 
S86, we showed the 10 annotations with the highest median 
feature importance scores across all loci for HDL, LDL, TG, 
and TC, respectively. Our analysis demonstrated consistent 
patterns in the top-ranking functional annotations across all 
four lipid traits. Therefore, we summarized the distribution 
of feature importance scores across all four lipid traits in  
Fig. 6. Three categories of annotations emerged as particu
larly influential: nucleotide diversity, Genomic Evolutionary 
Rate Profiling number of substitution score (GERP-NS), and 
recombination rate. According to previous study, these anno
tations are fundamental in understanding the genetic archi
tecture of complex human traits under the influence of 
negative selection (Gazal et al. 2017). Specifically, higher 
scores in nucleotide diversity, GERP-NS, and recombination 
rate were associated with lower probabilities of SNPs being 
causal, reflecting the impact of purifying selection on 

potentially deleterious variants. This pattern is particularly 
evident in regions with high recombination rates, where the 
Hill-Robertson effect leads to reduced heritability through 
more effective negative selection. Notably, all these annota
tions have a negative median effect on the causal probability, 
suggesting a higher annotation score indicates a lower proba
bility of the SNPs to be causal. Indeed, the original study of 
the three annotations (Gazal et al. 2017) also reported the 
greater annotation score was associated with a lower herita
bility, suggesting the action of negative selection. This consis
tency indicates that Funmap successfully captures the impact 
of negative selection acting on causal signals and utilizes this 
information to facilitate fine-mapping of causal variants. 
Besides, consistent with previous enrichment analysis of 
causal variants in 16 UKBB traits that include lipid traits 
(Weissbrod et al. 2020), Funmap feature importance showed 
strong effects of super enhancer, transcribed regions, and his
tone marker acetylation of histone H3 at lysine 27 

Figure 5. Comparison of credible set size and fine-mapping results from a region of TC GWAS. (a) Box plots of credible set size across four lipid traits. 
(b) Fine-mapping results of TC from locus 6 Mb–7 Mb in chromosome 8. The first column shows the heatmap of absolute correlation between rs2928617 
and its neighboring SNPs and the Manhattan plot. The red dashed line represents 5×10−8. The second to fourth column show the PIP obtained by with 
compared methods. The purple square represents SNP rs2928617 and the color of the points represents the correlation between neighboring SNPs and 
rs2928617. Dots with the same color of outline represent SNPs in the level-95% credible sets of a causal signal.
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(H3K27ac), suggesting the regulatory and epigenetic infor
mation are utilized by Funmap to enhance fine-mapping. 
Interestingly, 6 out of 21 continuous annotations were 
ranked among the top 10 most relevant annotations, suggest
ing continuous annotations may contain more informative 
signals compared to binary annotations. This highlights 
Funmap’s ability to integrating continuous annotations in 
practical applications.

4 Discussion and conclusion
In this article, we introduced a novel and computationally effi
cient fine-mapping method, Funmap, to adaptively integrate 
functional information from a vast amount of SNP annota
tions. It not only boosts the statistical power of fine-mapping, 
but also produces well-controlled FDR when considering a 
large number of functional annotations. Funmap’s efficient al
gorithm allows it to simultaneously identify multiple causal sig
nals while handling hundreds of annotations. Through 
comprehensive simulations, we showed that Funmap achieved 
greater statistical power and higher resolution while producing 
better-controlled FDR. We applied Funmap to identify causal 
SNPs for 4 lipid traits by integrating 187 functional annota
tions, yielding substantial power gains. Importantly, we showed 
that Funmap effectively avoided spurious results, identifying 
causal SNPs that could be better reproduced.

Our Funmap framework can be extended along several 
directions. First, while our main analysis focuses on func
tional features related to genic region, allele frequency, and 
LD, publicly available resources at single-cell resolution are 
rapidly growing, serving as new data resources to annotate 
risk SNPs. Integration of fine-mapping with single-cell geno
mics, epigenomics, and proteomics data will be a promising 

direction to reveal the cellular contexts of causal signals (Yu 
et al. 2022). Second, Funmap selects relevant annotations by 
adopting an ad-hoc ranking procedure, which does not guar
antee the control of FDR or type-I error rate when inferring 
associated annotations. To enable statistically rigorous infer
ence on annotation weights, Funmap’s random effects model 
can be extended by introducing a sparse probabilistic struc
ture, such as the spike-slab model (Ming et al. 2018).

Supplementary data
Supplementary data are available at Bioinformatics online.
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conducted using the UK Biobank Resource under Application 
Number 96744.

Data availability
Selected gene regions in simulation are available at https:// 
github.com/ZikunY/CARMA/tree/master/Simulation% 
20Study. Summary data of Lipid-related traits are available 
at https://nealelab.github.io/UKBB_ldsc/index.html. LD files 
for UKBB British-ancestry are available at https://nealelab. 
github.io/UKBB_ldsc/index.html. Functional annotations for 
real data are available at https://alkesgroup.broadinstitute. 
org/LDSCORE/baselineLD_v2.1_annots. Summary statistics 
from GLGC can be downloaded at https://csg.sph.umich.edu/ 
willer/public/glgc-lipids2021.
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