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ABSTRACT
In various practical situations, matrix factorization methods suffer from poor data quality, such as high
data sparsity and low signal-to-noise ratio (SNR). Here, we consider a matrix factorization problem by using
auxiliary information, which is massively available in real-world applications, to overcome the challenges
caused by poor data quality. Unlike existing methods that mainly rely on simple linear models to combine
auxiliary information with the main data matrix, we propose to integrate gradient boosted trees in the
probabilistic matrix factorization framework to effectively leverage auxiliary information (MFAI). Thus, MFAI
naturally inherits several salient features of gradient boosted trees, such as the capability of flexibly modeling
nonlinear relationships and robustness to irrelevant features and missing values in auxiliary information. The
parameters in MFAI can be automatically determined under the empirical Bayes framework, making it adap-
tive to the utilization of auxiliary information and immune to overfitting. Moreover, MFAI is computationally
efficient and scalable to large datasets by exploiting variational inference. We demonstrate the advantages
of MFAI through comprehensive numerical results from simulation studies and real data analyses. Our
approach is implemented in the R package mfair available at https://github.com/YangLabHKUST/mfair.
Supplementary materials for this article are available online.
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1. Introduction

Matrix factorization (Srebro, Rennie, and Jaakkola 2004;
Salakhutdinov and Mnih 2007) is widely used when handling
large-scale data. It has become an important topic in the fields
of applied mathematics, statistics, and machine learning because
of its broad applications. For example, as motivated by the
Netflix Prize, matrix factorization has emerged as an effective
method to infer the unobserved entries, commonly referred to
as the matrix completion problem (Candès and Recht 2009;
Mazumder, Hastie, and Tibshirani 2010; Ilin and Raiko 2010).
Matrix factorization can also help uncover the underlying struc-
tures of datasets from diverse research topics, such as back-
ground modeling in moving object detection (Zhou, Yang, and
Yu 2012; Zhou et al. 2014), dimension reduction and adjust-
ment for confounding variations (Yang et al. 2013; Lin et al.
2016).

Although existing matrix factorization methods have been
used in various applications, major challenges remain due to
low-quality data in practice. First, the observed matrix can be
very sparse for the matrix completion problem. Second, the
observed matrix can be quite noisy, and matrix factorization in
low signal-to-noise ratio (SNR) settings tends to overfit easily.
Effective extraction of signals in the low SNR setting becomes
critical for the success of matrix factorization. A promising
way to overcome the above challenges is to leverage auxiliary
information (Singh and Gordon 2008; Kula 2015; Aktukmak,
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Yilmaz, and Uysal 2019; Yilmaz, Aktukmak, and Hero 2021),
which is massively available in real-world applications (Vel-
ten et al. 2022; Shang and Zhou 2022). To date, there have
been a number of studies on matrix factorization with auxil-
iary information. These methods can be roughly grouped into
two categories: regularized methods and Bayesian methods. For
regularized methods, they often assume some shared structures
between auxiliary information and the main matrix such that
auxiliary information can be incorporated to regularize the
factorization of the main matrix. For Bayesian methods, they
often build a probabilistic model where auxiliary information is
incorporated through a linear model.

Despite many efforts in the incorporation of auxiliary infor-
mation, several main issues remain. First, existing methods
rely on linear models to combine auxiliary information with
the main matrix, which may limit its role because linear
models are not flexible enough. A more flexible framework
is highly desired to take full advantage of auxiliary infor-
mation. Second, the computational costs of existing methods
are often quite expensive, even though only linear models
are used. For example, Bayesian methods often use sampling
methods to approximate posterior distributions, which are too
computationally expensive to scale up for large datasets. For
some regularized methods, efficient implementation is also
lacking due to the challenge of parallelization (Hubbard and
Hegde 2017). Third, incorporating irrelevant information will
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not improve but degrade the performance. Existing methods
largely rely on parameter tuning to control the amount of
auxiliary information incorporated. Although cross-validation
can help with this, it will become very time-consuming
when there are many tuning parameters. Statistical methods
that can adaptively leverage auxiliary information are highly
demanding.

In this article, we develop a scalable Bayesian Matrix
Factorization approach to adaptively leveraging Auxiliary
Information (MFAI). Specifically, MFAI is a unified probabilistic
approach to integrating gradient boosted trees (Friedman 2001)
with matrix factorization. Through innovations in the model
and algorithm designs, MFAI has several unique advantages over
existing matrix factorization methods. First, MFAI naturally
inherits several salient features of gradient boosted trees, such
as the capability of flexibly modeling nonlinear relationships,
robustness to irrelevant features and missing values in predic-
tors, and ranking the relative importance of auxiliary informa-
tion, which offers more interpretable insights (Elith, Leathwick,
and Hastie 2008; Sigrist 2022). Second, the parameters in MFAI
can be automatically determined under the empirical Bayes
framework, making it adaptive to the utilization of auxiliary
information. Third, MFAI is computationally efficient and scal-
able to large datasets by exploiting variational inference (VI)
(Bishop 2006; Blei, Kucukelbir, and McAuliffe 2017). Through
comprehensive simulation experiments and real data studies, we
demonstrate that MFAI can perform better in matrix factoriza-
tion and completion tasks than the existing methods.

2. Methods

2.1. The MFAI Model

Given the main data matrix Y ∈ R
N×M of N samples and M fea-

tures, we consider the following matrix factorization problem:

Y = ZWT + ε, (1)

where Z ∈ R
N×K and W ∈ R

M×K are two matrices with K ≤
min {N, M}, and ε ∈ R

N×M is a matrix of residual error terms.
Here, we adopt the terminology of factor analysis and refer to
Z as the “factors”, W as the “loadings”, and K as the number of
factors. We can further expand the above formulation as the sum
of the K factors

Y =
K∑

k=1
Z·kWT

·k + ε, (2)

where Z·k and W·k are the kth column of Z and W, respectively.
To perform matrix factorization of Y, we can use not only the
main matrix but also some auxiliary information that may be
helpful in identifying the factors. Specifically, we relate Z·k and
auxiliary covariates X using the following probabilistic model:

Z·k ∼ NN
(
Fk (X) , β−1

k IN
)

, k = 1, . . . , K, (3)

where Fk(X) ∈ R
N×1 is the mean vector of the factor Z.k,

βk is the precision, IN ∈ R
N×N is an identity matrix, and

NN(μ, �) denotes the N-variate Gaussian distribution with
mean μ and covariance �. Note that Fk (X) is the row-wise
evaluation of the unknown function Fk : RC → R, Fk (X) =

(Fk (X1·) , . . . , Fk (XN·))T, where Xn· = (Xn1, . . . , XnC)T ∈
R

C×1 is the nth row of X containing auxiliary information for
the nth sample. In the MFAI model, we assume that Fk (·) in (3)
is a nonlinear function represented by a tree ensemble,

Fk (·) =
Tk∑

t=1
f t
k (·) , (4)

where f t
k (·) is a regression tree (Breiman 1984), and Tk is the

total number of trees. We then assign an independent Gaussian
prior for the corresponding kth loading W.k

W.k ∼ NM(0, IM), (5)

which can push the variability to the factor Z·k side and partially
help avoid the non-identifiability issue. Matrices Z and W here
are often referred to as latent variables in the statistical machine
learning literature. At last, we assume independent Gaussian
error terms

εnm ∼ N (0, τ−1), n = 1, . . . , N and m = 1, . . . , M, (6)

where τ is the precision parameter.
Let � = {τ , β} = {τ ; β1, . . . , βK} be the collection of model

parameters and F (·) = {F1 (·) , . . . , FK (·)} be the collection of
K unknown functions. Combining (2), (3), (5), (6), we can write
down the joint probabilistic model as

Pr (Y, Z, W | �, F(·))
= Pr (Y | Z, W; τ) Pr (Z | β , F(·)) Pr (W)

= Pr (Y | Z, W; τ)

K∏
k=1

Pr (Z.k | βk, Fk(·))
K∏

k=1
Pr (W.k) .

(7)

As an empirical Bayes approach, we can adaptively estimate �

and F (·) by optimizing the log marginal likelihood

(
�̂, F̂(·)) = arg max

�,F(·)
log Pr (Y | �, F(·))

= arg max
�,F(·)

log
∫

Pr (Y, Z, W | �, F(·)) dZ dW.

(8)
Then, we can infer the latent factors and loadings using the
posterior probability

Pr
(
Z, W | Y; �̂, F̂(·)) = Pr

(
Y, Z, W | �̂, F̂(·))

Pr
(
Y | �̂, F̂(·)) . (9)

2.2. Fitting the MFAI Model

We begin our algorithm design with the single-factor case, that
is, K = 1, and extend our algorithm to the multi-factor case in
Section 2.2.4. To further lighten the notation, we use z ∈ R

N×1

and w ∈ R
M×1 instead of Z·1 and W·1.
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2.2.1. Approximate Bayesian Inference
The Bayesian inference using (8) and (9) is intractable since
the marginal likelihood Pr (Y | �, F (·)) cannot be computed
by marginalizing all latent variables. To tackle the Bayesian
inference problem, there are two main methods: Markov Chain
Monte Carlo (MCMC) (Neal 1993), which is a sampling-based
approach, and variational inference (VI) (Bishop 2006; Blei,
Kucukelbir, and McAuliffe 2017), which is an approximation-
based approach. The advantage of the sampling-based methods
is that they produce exact results asymptotically. In practice,
however, they are often too computationally expensive for large-
scale problems. Here, we propose a variational expectation-
maximization (EM) algorithm to perform approximate Bayesian
inference (see Appendix Section A.1 for details). To apply vari-
ational approximation, we first define q (z, w) as an approxi-
mated distribution of posterior Pr (z, w | Y; �, F (·)). Then, we
obtain the evidence lower bound (ELBO) of the logarithm of the
marginal likelihood using Jensen’s inequality

log Pr (Y | �, F (·))
≥

∫
q (z, w) log

Pr (Y, z, w | �, F (·))
q (z, w)

dz dw

= Eq
[
log Pr (Y, z, w | �, F (·))] − Eq

[
log q (z, w)

]
� ELBO

(
q; �, F (·)) ,

(10)

where the equality holds if and only if q (z, w) is the exact
posterior Pr (z, w | Y; �, F (·)). Instead of maximizing the log-
arithm of the marginal likelihood, we can iteratively maximize
the ELBO with respect to the variational approximate posterior
q, the model parameters �, and the function F (·)(̂

q; �̂, F̂ (·)) = arg max
q;�,F(·)

ELBO
(
q; �, F (·)) . (11)

Using the terminology in the EM algorithm, maximizing ELBO
with respect to q is known as the E-step, and maximizing ELBO
with respect to � and F (·) is known as the M-step. To approxi-
mate the posterior distribution, we consider the following mean-
field factorization of q (z, w):

q (z, w) = q (z) q (w) . (12)
Without further assumptions, we show that (with details in
Appendix Section A.1.1) the optimal solutions of q (z) and q (w)

in the E-step are given as two Gaussian distributions
q (z) = NN

(
z | μ, a2IN

)
, q (w) = NM

(
w | ν, b2IM

)
, (13)

where μ ∈ R
N×1 and ν ∈ R

M×1 are posterior mean
vectors, a2 and b2 are posterior variances. Now suppose that
we are at the tth step of the iteration, and we have obtained{
μ(t−1), a2(t−1); ν(t−1), b2(t−1)

}
, �(t−1) = {

τ (t−1), β(t−1)
}

, and
F(t−1) (·) at the (t − 1)th step. To maximize ELBO in the tth E-
step, we can update variational parameters as

a2(t) = 1

β(t−1) + τ (t−1)
(∥∥ν(t−1)

∥∥2
2 + Mb2(t−1)

) ,

μ(t) = a2(t) (
β(t−1)F(t−1) (X) + τ (t−1)Yν(t−1)

)
,

b2(t) = 1

1 + τ (t−1)
(∥∥μ(t)

∥∥2
2 + Na2(t)

) ,

ν(t) = b2(t)
τ (t−1)YTμ(t),

(14)

where ‖·‖2 for a vector denotes the Euclidean norm. Under the
variational approximation framework, q(t) (z) and q(t) (w)

can be viewed as the approximation to the posteriors
Pr

(
z | Y; �(t−1), F(t−1) (·)) and Pr

(
w | Y; �(t−1), F(t−1) (·)).

Naturally, we can infer z and w using the posterior mean
μ(t) and ν(t) after the convergence of the algorithm. With q(t)

updated in the tth E-step, the ELBO can be written as

ELBO
(

q(t)
(

z, w | μ(t), a2(t); ν(t), b2(t)) ; τ , β , F (·)
)

=Eq(t)(z,w)

[
log Pr (Y, z, w | �, F (·))] − Eq(t)(z,w)

[
log q(t)(z, w)

]
= − τ

2

(∥∥∥Y(t) − μ(t)ν(t)T∥∥∥2

F
+

∥∥∥∥(
μ(t)2+ a2(t)) (

ν(t)2+ b2(t))T

−μ(t)2 (
ν(t)2)T

∥∥∥∥
1,1

)
+ NM

2
log τ + N

2
log β

− β

2

(∥∥∥μ(t) − F (X)

∥∥∥2

2
+ Na2(t)

)
+ const.

(15)
Here, for a matrix, ‖·‖F denotes the Frobenius norm, and ‖·‖1,1
denotes the entry-wise matrix norm. We first fix F(t−1) (·) and
consider optimizing �. By setting the derivatives with respect
to � to zero, we obtain the update equations

τ (t) = NM∥∥∥Y − μ(t)ν(t)T
∥∥∥2

F
+

∥∥∥(
μ(t)2 + diag

(
A(t)))(

ν(t)2 + diag
(
B(t)))T − μ(t)2 (

ν(t)2)T
∥∥∥∥

1,1

,

β(t) = N∥∥μ(t) − F(t−1) (X)
∥∥2

2 + Na2(t) ,

(16)
where μ2 ∈ R

N×1 denotes Hadamard product μ2 = μ � μ,
and diag (A) ∈ R

N×1 denotes a vector containing all the entries
on the main diagonal of A. To maximize ELBO with respect
to F (·), we propose to update F (·) in a stage-wise manner by
sequentially adding f (t) (·) to the current estimate F(t−1) (·)

f (t) (·) = arg min
f (·)

∥∥∥μ(t) − F(t−1) (X) − f (X)

∥∥∥2

2
,

F(t) (·) = F(t−1) (·) + s · f (t) (·) ,
(17)

where f (t) (·) is a single regression tree to approximate the func-
tional gradient, and 0 < s < 1 is the so-called shrinkage param-
eter or learning rate, whose default value is set relatively small
(s = 0.1) in our implementation to avoid overfitting. Clearly,
information in the auxiliary matrix is gradually incorporated to
modulate the prior of z. To summarize, the proposed algorithm
is a variational EM algorithm and its convergence is naturally
guaranteed. The novelty of the proposed algorithm comes from
the way we update function F (·), where we combine the gradient
boosting strategy (17) into the iterations of our variational EM
algorithm. We denote the proposed algorithm to fit the single-
factor model as MFAI_SF and summarize it in Algorithm 1.

To assess the scalability of MFAI, we analyze the computa-
tional complexity of each step in the proposed algorithm. We
begin with the computations of the approximate posterior mean
and variance in the E-step, which are given by (14). The updates
for both μ and ν rely on matrix-vector multiplications, resulting
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Algorithm 1: Fitting the Single-Factor MFAI Model
Data: main data matrix Y and auxiliary matrix X
Result: estimate of the latent variables ẑ = μ and ŵ = ν

1 initialize q(0), �(0), and F(0) (·) = 0 ;
2 t ← 0 ;
3 repeat
4 t ← t + 1 ;
5 μ(t), a2(t); ν(t), b2(t) ← arg max

μ,a2;ν,b2
ELBO

(
q
(
μ, a2; ν, b2) ; τ (t−1), β(t−1); F(t−1) (·)) ;

6 τ (t), β(t) ← arg max
τ ,β

ELBO
(

q
(
μ(t), a2(t); ν(t), b2(t)

)
; τ , β ; F(t−1) (·)

)
;

7 f (t) (·) ← arg max
f (·)

ELBO
(

q
(
μ(t), a2(t); ν(t), b2(t)

)
; τ (t), β(t); F(t−1) (·) + f (·)

)
;

8 F(t) (·) ← F(t−1) (·) + s · f (t) (·) ;
9 until convergence criterion satisfied;

10 return μ(t), a2(t); ν(t), b2(t); τ (t), β(t); F(t) (·).

in a computational complexity of O (NM). The updates for a2

and b2 primarily involve the calculation of the �2-norm and
require O (M) and O (N) computations, respectively. Moving
on to the M-step, we need to update the model parameters
� as in (16) and fit a single regression tree as in (17). The
update for τ entails matrix multiplications and matrix norm
calculations, resulting in a total computational complexity of
O (NM). The update for β also requires the calculation of the �2-
norm, resulting in the computational complexity ofO (N). To fit
a single regression tree, we need to sort the data for each node
and each auxiliary feature, which takes O

(
N log N

)
computa-

tions. Following this, we traverse the data points to find the best
threshold, which takes O (N) computations. Considering all C
auxiliary features, the total computational complexity would be
of O

(
CN log N

)
. These complexity analyses provide insights

into the computational requirements of the MFAI algorithm and
its scalability.

2.2.2. Missing Data
One important feature of MFAI is its ability to handle missing
data, either in the main matrix Y or in the auxiliary matrix
X. To handle Y with missing entries, we first make the typical
assumption that they are missing at random (MAR) (Little and
Rubin 1987), that is, given the observed data, the missingness
does not depend on the unobserved data or latent variables.
Then, we can consider the following probabilistic model only
for the observed entries Yobs:

Pr
(

Yobs | z, w; τ
)

=
∏

(n,m)∈�obs

Pr (Ynm | z, w; τ) , (18)

where �obs is the collection of the indices of the observed entries
of Y. The detailed algorithm within the approximate Bayesian
inference framework is similar to that of the complete data case
and is included in Appendix Section A.2. As for the missing
data in the auxiliary matrix, it is clear that only the update
steps involving the auxiliary matrix X need to be reconsidered.
using the rpart package (Therneau and Atkinson 2022), any
observation with value for the dependent variable (i.e., μn) and
at least one independent variable (i.e., one of {Xn1, . . . , XnC})

will participate in the modeling. For each split, the observation
with the missing split variable will be split based on the best
surrogate variable; if that’s missing, then by the next best, and
so on.

2.2.3. Ranking the Importance of Auxiliary Covariates
In a single tree, the importance of a variable is given by the
total goodness of all the splits, either as a primary or a surrogate
variable. The higher the importance value, the more the variable
contributes to improving the model. By inheriting the merit of
the regression trees, the model given by MFAI can be used to
rank the importance of auxiliary covariates. Suppose the variable
importance of the cth covariate (i.e., X·c) in the tth tree (i.e.,
f t (·)) is Itc, then the total importance score is given by

Ic =
T∑

t=1
Itc, (19)

where T is the total number of trees contained in the model.

2.2.4. The Multi-Factor MFAI Model
We now extend the single-factor approach to fit the multi-
factor model following Wang and Stephens (2021). To do so,
we introduce variational approximations

{
q (Z·k) , q (W·k)

}
for k = 1, . . . , K, and then optimize ELBO(q(Z·1, W·1), . . . ,
q(Z·K , W·K); τ , β1, . . . , βK , F1(·), . . . , FK(·)). Similar to the
single-factor case, the optimization can be done by iteratively
updating parameters relating to a single factor while keeping
others fixed. The updates of a single pair {Z·k, W·k} are
essentially identical to those for fitting the single-factor model,
except that Y is replaced with the residuals obtained by removing
the estimated effects of the other K − 1 pairs

Rk = Y −
∑
k′ �=k

Z·k′WT
·k′ . (20)

It is worth mentioning that by doing so, we implicitly assume the
full factorization of q as

q (Z, W) =
K∏

k=1
Z·k

K∏
k=1

W·k, (21)
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which enjoys a fast computation speed at the cost of a slight
decrease in accuracy. We implement two algorithms for fitting
the K-factor MFAI model: the greedy algorithm and the backfit-
ting algorithm. The greedy algorithm starts by fitting the single-
factor model and then adds factors k = 2, . . . , K, one at a time.
The backfitting algorithm (Breiman and Friedman 1985) iter-
atively refines the estimates for each factor given the estimates
for the other factors. In our MFAI framework, we choose to
use the greedy algorithm first to provide rough estimates as the
initialization for the backfitting algorithm. The two algorithms
are both detailed in Appendix Section B.

A practical issue with matrix factorization is how to select
the number of factors K. Taking advantage of the additive
model and the stage-wise manner to fit the K-factor model
sequentially, MFAI can automatically determine K with a little
modification to the algorithm. We first set the maximum value
of the number of factors Kmax and perform the greedy algorithm
with K replaced by Kmax. In this process, if we find the kth
factor/loading combination μkν

T
k is very close to zero for one

specific k ∈ {1, . . . , Kmax}, then we stop the procedure and only
use the first k − 1 factors as the final estimates. The modified
algorithm is summarized in Appendix Section B. It is worth
emphasizing that our approach is actually very similar to the
automatic relevancy determination (ARD) (Babacan et al. 2012),
whose key idea is that if the data are consistent with a small
absolute value, then the prior precision will be estimated to
be large, which results in the shrinkage of the corresponding
factor/loading combinations toward zero and hence reduces the
rank of the estimate.

3. Numerical Experiments

In this section, we gauge the performance of MFAI in com-
parison with alternative methods using both simulations and
real data analyses. We choose the compared methods based
on two considerations. First, they are scalable to large datasets.
Second, their software are documented and maintained well.
Based on the above criteria, we include EBMF (Wang and
Stephens 2021), hardImpute, softImpute (Mazumder, Hastie,
and Tibshirani 2010; Hastie et al. 2015), and CMF (Singh and
Gordon 2008) in comparison. We note that the Bayesian meth-
ods (MFAI and EBMF) are self-tuning. The softImpute has a
single tuning parameter λ to control the nuclear norm penalty,
which is chosen by cross-validation. We apply CMF with the
default settings of R package cmfrec (Cortes 2018). In the spirit
of reproducibility, the source code and R scripts used to generate
the results of our numerical experiments are made publicly
available at https://github.com/YangLabHKUST/mfair.

3.1. Simulation Studies

3.1.1. Imputation Accuracy
The simulation datasets were generated as follows. For all set-
tings, we fixed N = 1000, M = 1000, C = 3, and K =
3. The auxiliary matrix X ∈ R

1000×3 was generated from
uniform distribution Xnc

iid∼ U (−10, 10). Then we generated
latent factors Z ∈ R

1000×3 via functions, F1 (x) = 1
2 x1 − x2,

F2 (x) = 1
10 x2

1 − 1
10 x2

2 + 1
5 x1x2, and F3 (x) = 5 sin

( 1
100 x3

3
)
. We

defined the proportion of variance explained (PVE) by Fk(X)

as PVEk = var(Fk(X))

var(Fk(X))+β−1
k

, and controlled PVEk = 0.95 for

k ∈ {1, 2, 3}. The latent loading matrix W ∈ R
1000×3 was

generated from normal distribution Wmk
iid∼ N (0, 1). With Z

and W, we obtained the true value Ytrue = ZWT. At last, we
added random noises Y = Ytrue + ε where εnm ∼ N(0, τ−1).
Then the PVE by the factors is defined as PVE = var(Ytrue)

var(Ytrue)+τ−1 .
To mimic the real data with a partially observed main matrix,
we randomly masked a subset of entries of Y and denoted their
index set as �miss and the remaining with index set �obs. The
missing ratio then can be computed as |�miss|

NM . To evaluate the
imputation accuracy, we used half of the entries in �obs as the
training data and the remaining entries as the test data with
index set �train and �test, respectively. Then, we applied matrix
factorization methods to Ytrain and obtained Ŷ. The imputation
accuracy can be measured by root-mean-square error (RMSE)
on �test

RMSE
(
Ŷ, Y

) =
√∑

(n,m)∈�test
(
Ŷnm − Ynm

)2

|�test| . (22)

We designed two sets of experiments to test the methods in
a wide range of data quality settings. In Experiment 1, we
fixed the missing ratio, |�miss|

NM = 0.5 and varied PVE ∈
{0.1, 0.5, 0.9}. In Experiment 2, we fixed the PVE = 0.5 and
varied missing ratio ∈ {0, 0.5, 0.9}. We specified the number
of factors for all methods to be the true value K = 3 and
repeated the simulations 50 times for each setting. The greedy
algorithm of our MFAI with default parameter settings took
about 1 min, and the continuing backfitting algorithm took a
few more seconds for each experiment using four CPU cores of
Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz processor on a
Linux computing platform.

We summarized the relative RMSE of alternative methods
to MFAI in the first row of Figure 1 for Experiment 1. Our
MFAI method with backfitting achieved the best accuracy in
all settings. When the signal was strong, the RMSE of EBMF,
hardImpute, and softImpute were slightly higher than MFAI,
while the advantage of MFAI became more evident as the PVE
decreased due to its ability to incorporate auxiliary information.
Although CMF can also do that, it generally performed poorly
in this simulation setting because it can use only the linear
model. In Experiment 2, as shown in the second row of Figure 1,
the relative performance of alternative methods to MFAI highly
depends on the data sparsity. When the main matrix Y was
highly sparse, there was little room for improvement if only Y
was available. Overall, MFAI can significantly outperform other
approaches when the data quality is poor, such as weak signal
and high sparsity. When the data quality is relatively good, it still
retains its competitiveness and achieves slight but steady gains.

3.1.2. Robustness
To exhibit MFAI’s ability to distinguish useful auxiliary covari-
ates from irrelevant ones, we rank the importance of the covari-
ates in Figure 2, which has been defined in Section 2.2.3. We
already have the auxiliary matrix X ∈ R

1000×3 and the main
matrix Y ∈ R

1000×1000 with PVE = 0.5, which were gen-
erated as described in Section 3.1.1. To introduce irrelevant

https://github.com/YangLabHKUST/mfair
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Figure 1. Boxplots comparing the imputation accuracy of different methods. Accuracy is measured by the difference in each method’s RMSE from the MFAI’s RMSE, then
divided by the MFAI’s RMSE, with smaller values indicating higher accuracy. The y axis is plotted on the square-root scale to avoid the plots being dominated by methods
performed poorly.

Figure 2. Barplots for the importance scores of the auxiliary covariates in Factor 1–3. The importance scores in each factor have been rescaled to have a sum of one.

covariates, we included three covariates by permuting the rows
of X and four additional redundant variables from the uni-
form distribution U (−10, 10), denoted as Xpmt ∈ R

1000×3

and Xrdd ∈ R
1000×4, respectively. At last, we combined them

column-wise and got Xall = [
X, Xpmt, Xrdd] ∈ R

1000×10. We
applied MFAI to Y and Xall in different situations and visualized
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Figure 3. Lineplots for the computation timings against data size.

the importance scores of all the auxiliary covariates in the top
three factors. In the left panel (first three columns), we masked
the main matrix Y randomly and varied the missing ratio. In
the right panel (next three columns), we fixed the missing ratio
of Y at 0.5, and further masked the auxiliary matrix Xall ran-
domly at the different missing levels. Figure 2 shows that those
unimportant auxiliary covariates get nearly zero importance
scores under all data sparsity settings, which indicates that MFAI
can effectively distinguish those useful auxiliary covariates, even
though the datasets were highly sparse.

3.1.3. Computational Efficiency
Finally, we show the computational efficiency of MFAI (Fig-
ure 3). We first fixed the sample size N = 5000 and varied
the number of features M ∈ {1000, 2000, 3000, 4000, 5000}
(the left panel), and then fixed M = 5000 and varied N ∈
{1000, 2000, 3000, 4000, 5000} (the right panel). We applied
the single-factor MFAI and fixed the number of iteration steps
as the same value of 20. Furthermore, the experiments were
repeated with different numbers of auxiliary covariates, C ∈
{1000, 2000, 3000}, indicated by different colors.

3.2. Real Data Analyses

3.2.1. Data Description and Methods Setup
The two real datasets used in this section are as follows: The
MovieLens 100K data is extensively used to evaluate recom-
mender system performance (Harper and Konstan 2015). The
main matrix Y ∈ R

1682×943 contains 100K observed ratings
(0–5 stars), where each row represents a movie and each col-
umn represents a user. The auxiliary matrix X ∈ R

1682×18 is
a binary matrix indicating movie genre information with 18
genres in total. The human brain gene expression data is a fully
observed matrix of bulk gene expression from the human brain
transcriptome (HBT) project (Kang et al. 2011). We used the
measurements in the neocortex areas as the main matrix Y ∈
R

886×17,568, with rows representing tissue samples and columns
representing genes. Recent studies highlight the importance of
region and age in global gene expression differences; therefore,
we extracted brain region and time period information, resulting
in an auxiliary data frame X ∈ R

886×2. More details can be
found in Appendix Section C.

Both Bayesian methods, MFAI and EBMF can automatically
estimate K, and we set Kmax = 20 for MovieLens 100K data
and Kmax = 150 for human brain gene expression data which
are sufficiently large. For softImpute, hardImpute, and CMF,
we specified K based on the values inferred by MFAI. We first
compared the imputation accuracy in terms of the RMSE and
then showed that MFAI could illuminate the logic of how the
auxiliary information relates to the main data matrix.

3.2.2. Imputation Accuracy
In this section, we examined the imputation performance of
the compared methods (Figure 4). First, we randomly split the
observed entries �obs into a training set �train and a test set
�test. Then, we applied matrix factorization methods to the
training data and predicted the entries in the held-out set. The
imputation accuracy of the held-out entries was measured by
RMSE (22). We considered different values of the “training ratio”
which is defined as |�train|

|�obs| . We repeated the experiments 50
times for each setting of the training ratio. MFAI used only
around 2 min to analyze MovieLens 100K data with inferred
K = 9 and around 150 min to analyze human brain gene
expression data with inferred K = 95, using four CPU cores
of Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz processor
on a Linux computing platform. By contrast, EBMF, another
Bayesian method that cannot incorporate auxiliary information,
used around 1 min to analyze MovieLens 100K data and around
130 min to analyze human brain gene expression data using the
same computing resources, suggesting that MFAI can leverage
auxiliary information with only minor computational overhead.

We summarized the results in Figure 4. For the Movie-
Lens 100K data, MFAI and CMF outperformed other methods
by incorporating the movie genre information, suggesting the
movie genre provides useful information to predict user ratings.
MFAI gained greater improvement from the movie genre infor-
mation than CMF because the gradient boosted tree offers a
more flexible structure than the linear model in CMF. The auxil-
iary information of the human brain gene expression data comes
from two different sources: regions and time periods, where
regions are represented as categorical variables and time peri-
ods are represented as numerical variables. MFAI also achieved
the best performance because the tree structure in MFAI is
very good at handling mixed data types (i.e., categorical and
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Figure 4. Boxplots comparing the imputation accuracy of different methods. Accuracy is measured by the difference in each method’s RMSE from the MFAI’s RMSE, then
divided by the MFAI’s RMSE, with smaller values indicating higher accuracy. The y axis is plotted on the square-root scale to avoid the plots being dominated by methods
performed poorly.

numerical variables). In contrast, CMF did not perform well
in this dataset, which may be attributed to the fact that the
linear models are often not good at handling mixed data types
and capturing possible spatial-temporal interaction effects in the
gene expression data. These evidence suggests that MFAI can
effectively leverage auxiliary information to improve imputation
accuracy in highly sparse datasets.

3.2.3. Enrichment of Movie Genres in MovieLens 100K Data
Analysis

In this section, we use MovieLens 100K data to illustrate the
ability of MFAI to identify important variables in auxiliary infor-
mation through decision trees (Figure 5). As a negative control,
we constructed a permuted genre matrix Xpmt ∈ R

1682×18,
where the cth column Xpmt

·c was obtained by permuting the
entries of X·c for c = 1, . . . , 18. We applied MFAI to the whole
MovieLens 100K data with three different auxiliary matrices
X, Xpmt, and Xboth = [

X, Xpmt] ∈ R
1682×36. Figure 5 visu-

alizes the importance scores of auxiliary covariates in the top
three factors. The top left panel shows the importance scores
obtained with X, which indicates the relevance of true movie
genres to user ratings. In Factor 1, “Drama” is the leading genre;
“Action” and “Children’s” are the two major genres in Factor
2; “Musical”, “Children’s”, and “Comedy” influence Factor 3.
When using the permuted matrix Xpmt as input (bottom left
panel), MFAI correctly assigned low importance scores to all
permuted genres and avoided incorporating irrelevant auxiliary

information. Finally, in the presence of both true and permuted
movie genres (right panel), MFAI successfully distinguished
useful movie genres from irrelevant ones. We can also observe
that the importance scores obtained using Xboth are highly con-
sistent with those obtained using X and Xpmt as separate inputs,
indicating the stability and robustness of MFAI.

3.2.4. Spatial and Temporal Dynamics of Gene Regulation
Among Tissues

The spatial and temporal patterns of gene regulation during
brain development have attracted a great deal of attention in
the neuroscience community. The aforementioned human brain
gene expression data has been analyzed by several statistical
methods (Lin et al. 2015, 2017). By modeling the relation-
ship between the spatial-temporal information and the gene
expression matrix via nonlinear functions Fk (·), MFAI can offer
biological insights into the heterogeneity in temporal dynam-
ics across different brain regions and the evolution of spatial
patterns over multiple time periods. Following Hawrylycz et al.
(2015), we selected genes with consistent spatial patterns across
individuals using differential stability (DS), which was defined
as the tendency for a gene to exhibit reproducible differential
expression relationships across brain structures (see Appendix
Section C.2.2 for details). As inputs of MFAI, we included 2000
genes with the highest DS, resulting in the new Y ∈ R

886×2000,
and used the same X ∈ R

886×2 with spatial and temporal
information.
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Figure 5. Barplots for the importance scores of the auxiliary covariates in Factor 1–3.

Table 1. Gene enrichment analysis on Loading 1–3.

Biological process P-value with
Bonferroni correction

Loading 1 Axon development 1.97 × 10−2

Neuron development 1.82 × 10−3

Neuron differentiation 8.03 × 10−5

Loading 2 Regulation of biological quality 2.25 × 10−10

Potassium ion transmembrane transport 6.25 × 10−5

Regulation of transport 2.84 × 10−7

Signaling 5.35 × 10−5

Cell communication 1.02 × 10−4

Loading 3 Regulation of cell junction assembly 4.04 × 10−3

Cell adhesion 8.07 × 10−4

Cell junction assembly 3.84 × 10−4

Nervous system development 5.58 × 10−5

To gain insights, the dynamic patterns of the top three factors
across different neocortex areas and time periods, represented by
fitted functions {F1 (·) , F2 (·) , F3 (·)}, are given in Figure 6(A).
Each factor has been normalized to have the �2-norm equal
one. It is obvious that fitted functions not only capture the non-
linearity across different time periods but also implicate spatial-
temporal interactions. Overall, all three factors show stronger
temporal differences compared to spatial differences within the
neocortex areas. The temporal trajectories of all three factors
show clear signs of prenatal development (from Period 3 to
Period 7). From infancy (Period 8 and afterward), Factor 2
exhibits increasing influence, while Factor 3 exhibits decreasing
influence in magnitude. Then, all three factors maintain steady
levels until late adulthood. All the non-V1C neocortex areas
show particularly pronounced correlations and consistency dur-
ing development. Factor 1 and Factor 3 in V1C showed distinc-
tive signals throughout development and adulthood, compared
to other neocortex areas.

Figure 6(B) is the heatmap of the top three inferred gene
loadings [W·1, W·2, W·3] ∈ R

2000×3. To understand them bet-
ter, we conducted the gene set enrichment analysis based on
Gene Ontology (http://geneontology.org/). Specifically, we first
calculated the relative weight of the kth loading for the mth gene
by |Wmk|∑3

k′=1|Wmk′ | , and then selected the top 300 weighted genes
in each loading to form the gene sets. The enriched biological
processes with corresponding p-values after Bonferroni correc-
tion are summarized in Table 1. Loading 1 relates to axon and
neuron development, consistent with its status as the leading
factor in the neocortex and relatively high signal level across
all periods, as shown in Figure 6(A). Loading 2 is enriched in
signaling (Luebke et al. 2004) and cell communication (López-
Otín et al. 2013), which are aging-related processes. Combining
Figure 6(A) and (B), the enrichment of Loading 2 in the ion
transport provides evidence that the interstitial ion is a key
regulator of state-dependent neural activity (Rasmussen et al.
2020). Loading 3 is mainly enriched in the cell junction, which
plays an important role during the development of the mam-
malian brain. In the mammalian central nervous system (CNS),
coupling of neurons by gap junctions (i.e., electrical synapses)
and the expression of the neuronal gap junction protein, con-
nexin 36 (Cx36), transiently increases during early postnatal
development, then subsequently declines and remains low in
adulthood, confined to specific subsets of neurons (Belousov
and Fontes 2013). This trend is highly consistent with the tem-
poral pattern of Factor 3 shown in Figure 6(A), reaching a brief
high magnitude around birth and quickly falling back.

4. Discussion

The auxiliary information is particularly useful to improve
matrix factorization when the observed matrix is noisy and

http://geneontology.org/
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Figure 6. Spatial-temporal dynamic patterns. (A) shows the normalized factor levels across different neocortex areas and time periods. (B) is the heatmap of the
corresponding normalized loadings.

sparse. In this article, we propose a scalable Bayesian matrix
factorization approach named MFAI to leverage auxiliary
information. By integrating the gradient boosted trees with
probabilistic matrix factorization, MFAI enables nonlinear
modeling of auxiliary covariates and allows the model param-
eters to be automatically estimated under the empirical Bayes
framework, making MFAI adaptive to the complicated con-
nections between the main matrix and auxiliary information.
Besides, MFAI naturally inherits several salient features of gra-
dient boosted trees, such as robustness to irrelevant features,
immunity to missing values in predictors, and the ability to dis-
tinguish useful covariates in the auxiliary information. With our
innovations in the model and algorithm designs, our mfair soft-
ware is effective, stable, and scalable to large datasets. Through
comprehensive experiments, we showed that MFAI is statisti-
cally accurate, especially in the scenario of high sparsity and
weak signal strength.

Taking advantage of probabilistic modeling, the MFAI can be
modified easily to further introduce other properties, such as
sparsity through spike and slab prior distribution over factors
and loadings. Another potential extension is to incorporate
auxiliary information not only of the samples to characterize the
factors but also of the features to help identify the loadings.

Supplementary Materials

Appendices: The online appendix file contains the detailed derivation,
algorithms, and data description (Appendices.pdf).

R Package: The R-package mfair contains the codes used in fitting the
MFAI model and analyzing the results (mfair_1.0.0.tar.gz).

Implementations of Compared Methods:
flashr https://github.com/stephenslab/flashr
cmfrec https://cran.r-project.org/package=cmfrec
softImpute https://cran.r-project.org/package=softImpute
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