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XMAP: Cross-population fine-mapping by
leveraging genetic diversity and accounting
for confounding bias

Mingxuan Cai 1 , Zhiwei Wang 2,3, Jiashun Xiao4, Xianghong Hu2,3,
Gang Chen5,6,7 & Can Yang 2,3

Fine-mapping prioritizes risk variants identified by genome-wide association
studies (GWASs), serving as a critical step to uncover biological mechanisms
underlying complex traits. However, several major challenges still remain for
existing fine-mappingmethods. First, the strong linkage disequilibriumamong
variants can limit the statistical power and resolution of fine-mapping. Second,
it is computationally expensive to simultaneously search for multiple causal
variants. Third, the confounding bias hidden in GWAS summary statistics can
produce spurious signals. To address these challenges, we develop a statistical
method for cross-population fine-mapping (XMAP) by leveraging genetic
diversity and accounting for confounding bias. By using cross-population
GWAS summary statistics from global biobanks and genomic consortia, we
show that XMAP can achieve greater statistical power, better control of false
positive rate, and substantially higher computational efficiency for identifying
multiple causal signals, compared to existing methods. Importantly, we show
that the output of XMAP can be integrated with single-cell datasets, which
greatly improves the interpretation of putative causal variants in their cellular
context at single-cell resolution.

Genome-wide association studies (GWASs) have reported hundreds
of thousands of associations between single-nucleotide poly-
morphisms (SNPs) and various phenotypes1, but most reported
SNPs reside in non-coding regions2–4. As the cell type and cellular
process in which the identified SNPs are active remains largely
unknown, the GWAS findings remain hard to interpret. Fine-
mapping seeks to prioritize the causal SNPs underlying complex
traits and diseases. Recent progress shows that, by integrating fine-
mapping results and single-cell data, it becomes feasible to identify
disease/trait-relevant cell types and cell states5,6. Therefore, fine-
mapping is a critical step to interpret GWAS findings by elucidating
their biological mechanisms of identified risk variants, and

fine-mapping results will offer an invaluable resource for precision
medicine7.

Despite the great promise offine-mapping, efforts toward reliable
prioritization of causal SNPs have been hampered by three key chal-
lenges. First, when GWAS samples come from a single population,
SNPs in a local genomic region can be highly correlated due to the low
recombination rates in that region. It is very difficult for statistical
methods to distinguish the causal variants from a set of SNPs in strong
linkage disequilibrium (LD). Second, genetic signals at trait-associated
regions are commonly conferred by many variants acting together. A
very recent study of 744 human expression quantitative trait loci
(eQTLs) reported that 17.7% of the eQTLs harbour more than one
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variant with major effects on gene expression levels, emphasizing the
importance of identifying multiple genetic variants within an asso-
ciated locus8,9. For example, an eQTL associated with ERPA2 and
Crohn’s disease was found to be driven by 13 separate variants9.
However, it becomes computationally expensive to simultaneously
search for multiple SNPs by enumerating causal combinations. Third,
the unadjusted socioeconomic status10 and geographic clustering11,12 in
GWAS samples can induce confounding bias in GWAS estimates13.
These confounding factors cannot be fully corrected through linear
mixed models (LMMs)14,15 or principal component analysis (PCA)16.
Fine-mapping without correcting the confounding bias in GWAS data
can yield spurious results.

Whilemany efforts have beendevoted to the development offine-
mapping methods, existing methods only partially addressed the
abovemajor challenges. The classicalfine-mappingmethods17,18 rely on
an exhaustive search for all possible causal configurations of variants.
They become computationally unaffordable when searching for more
than three causal associations among thousands of variants. More
efficient methods have been developed based on approximated
inference, including CAVIARBF19, FINEMAP20, and DAP-G21,22. A very
recent method, SuSiE23,24, introduces a novel framework by assuming
the overall genetic effects can be decomposed as a sum of single
effects. The model structure of SuSiE enables an efficient algorithm to
detect multiple causal SNPs with minor computational overhead. Its
extension, SuSiE-inf25, incorporates a polygenic component to improve
reproducibility. Despite their improvement in computational effi-
ciency, the statistical power of these methods is usually limited
because it is difficult for them to distinguish the causal variants from
thehighly correlated variants in the singlepopulation setting. To boost
the statistical power of fine-mapping, severalmethodswere developed
to leverage different LD patterns with cross-population GWASs,
including trans-ethnic PAINTOR26 and MsCAVIAR27. Although these
methods allow a locus to harbourmultiple causal variants in principle,
they require enumerating all causal combinations of variants, hence
become too time-consuming to search for more than three causal

variants. As a recent extension to SuSiE, SuSiEx28 improves the com-
putational efficiency of cross-population fine-mapping by inheriting
the algorithm design from SuSiE. However, existing fine-mapping
methods do not account for confounding bias in GWAS summary
statistics, leading to spurious results.

In this paper, wedevelop a statisticalmethod for cross-population
fine-mapping (XMAP) by leveraging genetic diversity and accounting
for confounding bias (Fig. 1). The success of XMAP relies on its three
unique features. First, XMAP can leverage distinct LD structures from
genetically diverged populations. It is known that individuals from
different population backgrounds usually have different LD structures.
For example, individuals from the African (AFR) population are known
to have narrower LD compared to those from the European (EUR)
population29. By jointly analyzing cross-population GWASs, XMAP can
effectively improve the power and resolution of fine-mapping. Second,
XMAP can identify multiple causal signals with a linear computational
cost, while many existing fine-mapping methods are too time-
consuming to identify multiple causal signals. Third, XMAP can cor-
rect the confounding bias in GWAS summary data to avoid false
positive findings and improve reproducibility. Through comprehen-
sive simulation studies, we show that XMAP not only improves the
statistical accuracy of fine-mapping but also offers a substantial com-
putational advantage over existing methods. The evidence from real
data analysis indicates that XMAP achieves substantial power gainwith
high reproducibility. By combining the GWASs of low-density lipo-
protein (LDL) from East Asian (EAS), African, and European, XMAP
identifies three times more putative causal SNPs than SuSiE. These
SNPs are strongly enriched in the eQTL of the liver, suggesting their
important roles underlying the biological process of LDL. Further-
more, using the height GWAS as an example, we show that XMAP can
effectively correct confounding bias and substantially improve
reproducibility. Lastly but importantly, XMAP results canbe integrated
with single-cell data to identify trait-relevant cell populations at single-
cell resolution, maximizing the utility of single-cell data for the infer-
ence of the pathological mechanisms. We apply XMAP to 12 blood

Fig. 1 | XMAP overview. XMAP takes the summary statistics and reference geno-
types frommultiple populations as inputs. XMAP can improve the statistical power
of fine-mapping by leveraging the distinct LD pattern across populations while
reducing false positives by accounting for confounding bias in GWAS summary

statistics. Paired with a fast algorithm, XMAP is able to efficiently identify multiple
causal signals. The fine-mapped SNPs can be integrated with single-cell datasets to
identify trait-relevant cells.
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traits and perform integrative analyses of the XMAP results and single-
cell profiles of 23 hematopoietic cell populations. The analysis results
suggest that XMAP enables the identification of the trait-relevant cell
types in which putative causal SNPs are active. For example, SNPs
identified by XMAP show a significant enrichment of the mean cor-
puscular volume in 99.3% of late-stage erythroid cells, which is very
helpful to interpret GWAS results.

Results
Method overview
XMAP is a computationally efficient and statistically accurate method
for fine-mapping causal variants using GWAS summary statistics. With
innovations in its model and algorithm design, XMAP has three fea-
tures: (i) It can better distinguish causal variants from a set of asso-
ciated variants by leveraging different LD structures of genetically
diverged populations. (ii) By jointly modeling SNPs with putative
causal effects and polygenic effects, XMAP allows a linear-time com-
putational cost to identify multiple causal variants, even in the pre-
sence of an over-specified number of causal variants. (iii) It further
corrects confounding bias hidden in the GWAS summary statistics to
reduce false positive findings and improve replication rates. The fine-
mapping results given by XMAP can be further used for downstream
analysis to illuminate the causal mechanisms at different cascades of
biological processes, including tissues, cell populations, and individual
cells. In particular, XMAP results can be effectively integrated with
single-cell datasets to identify disease/trait-relevant cells. We provide
the implementation of XMAP in an efficient and freely available R
package at https://github.com/YangLabHKUST/XMAP. The technical
details of XMAP are described in the Methods section.

Simulation study
We conducted comprehensive simulation studies to compare
the performance of XMAP with several related fine-mapping
methods, including DAP-G, FINEMAP, SuSiE, SuSiE-inf, PAINTOR,
MsCAVIAR, and SuSiEx. We also included an ad-hoc method that
takes the union of the SNPs separately identified in different popula-
tions. This method is equivalent to the following procedure. First, we
applied a single-population method to compute posterior inclusion
probability (PIP) of SNP j from different populations separately,
denoted as PIPj1,..,PIPjT, where T is the number of populations.
Then, for SNP j, its PIPs are compared across populations, and the
largest one is selected to represent the ‘merged PIP’ of the SNP
(i.e., PIPj,merge = maxfPIPj1,:::,PIPjT g).

To mimic realistic LD patterns in different populations, we used
genotypes of EUR samples from UKBB and genotypes of EAS samples
from a Chinese cohort30,31. We considered a region between the base
pair position 45,202,602 and 45,435,202 in chromosome22 (GRCH37),
which comprises p = 500 SNPs. To demonstrate the benefit of lever-
aging genetic diversity in different populations, we selected three
candidate SNPs that satisfy the following properties: (i) In EUR popu-
lation, they are in high LD (i.e., with absolute correlation >0.9) with at
least three non-causal SNPs. (ii) In EAS population, they are weakly
correlated with non-causal SNPs (i.e., have an absolute correlation >
0.6with less than two non-causal SNPs). The heatmaps in Fig. 2b show
the absolute correlation between the three candidate causal SNPs and
their neighboring SNPs. We investigated Ktrue causal SNPs, where
Ktrue∈ {1, 2, 3}, we randomly sampled Ktrue from the three candidate
SNPs as the causal ones. To mimic the unbalanced composition of
GWAS samples in global populations, we considered n2 = 20,000
samples from the EUR population and explored different sample sizes
n1 from the EAS population: 5000, 10,000, 15,000, and 20,000. For
reference LD matrices, we used the EUR LD matrix estimated with
337,491 British UKBB samples provided in a recent study32 and esti-
mated the EAS LD matrix with 35,989 EAS samples from the Chinese
cohort30. We designed our simulations in two scenarios. First, we

illustrated the benefit of cross-population fine-mapping by generating
GWAS data without confounding bias. In the second scenario, we
examined the effectiveness of XMAP in correcting confounding bias by
simulating GWAS summary data with unadjusted sample structure.

We first consider the scenario in the absence of confounding
bias. First, we generated the polygenic effects for all 44,728
SNPs in chromosome 22 which include the 500-SNPs target
region. Specifically, we constructed the polygenic effects with

½ϕ1j ,ϕ2j�∼N ð0, 0:005 0:004
0:004 0:005

� �
=500Þ for j = 1,..., 44,728,where0.005

is the total heritability contributed by polygenic effects of the 500
SNPs in the target locus, with a per-SNP heritability 0.005/500 = 10−5

and a genetic correlation 0:004ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005×0:005

p =0:8 between two populations.

Then, we simulated the causal effects in the two populations with
β1k ∼N ð0, 0:25500Þ and β2k ∼N ð0, 0:25500Þ for k = 1,..., Ktrue. This specification
means that each causal SNP has a 0.25/0.005 = 50 fold per-SNP herit-
ability enrichment compared to non-causal SNPs, and the effect sizes
of SNP k are not necessarily the same across the two populations. The
Ktrue causal SNPs jointly contribute 0.25/500 ×Ktrue = 5 × 10−4 ×Ktrue

heritability. We obtained the standardized genotype matrices

X1 = ½x11,:::,x1p� 2 Rn1 × 44,728 and X2 = ½x21,:::,x2p� 2 Rn2 × 44,728, whose
columns have zero mean and unit variance. Given the genotypes
and effect sizes, we generated quantitative phenotypes in the

two populations with y1 =
P44728

j = 1 x1jϕ1j +
PKtrue

k = 1 x1½k�β1k + e2 and

y2 =
P44728

j = 1 x2jϕ2j +
PKtrue

k = 1 x2½k�β2k + e2, where x1[k] and x2[k] are the

columns of X1 and X2 corresponding to the k-th causal SNP, and

e1 ∼N ð0,ð1� 0:005� 5 × 10�4 ×KtrueÞIn1
Þ and e2 ∼N ð0,ð1� 0:005�

5 × 10�4 ×KtrueÞIn2
Þ are independent noise in the two populations,

respectively. Finally, we computed the GWAS summary statistics by
marginally regressing the simulated phenotypes on each SNP for each
population (Fig. 2a). For XMAP, we first used the summary statistics of
all 44,728 SNPs to estimate the polygenic parameters and inflation
constants. Then, we ran variational EM algorithmwith the 500 SNPs in
the target region. For other methods, we directly applied them to the
500 SNPs in the target region. The details of data pre-processing and
parameter settings of XMAP and compared methods are given in
the Supplementary Note. For each setting, we generated 50 replicates
and identified causal variants by controlling the global false discovery
rate (FDR). To control the global FDR,wefirst compute the local FDRof
each SNP as fdrj = 1 − PIPj. Then we sort SNPs by local FDR in ascending
order and regard the j-th re-ordered SNP as a risk SNP if

FDRðjÞ =
Pj

i= 1
f drðiÞ
j < ξ , where fdr(i) is the i-th ordered local FDR, FDR(j) is

the corresponding global FDR, and ξ is the selected threshold to
control the global FDR (e.g., ξ = 0.1).We identified putative causal SNPs
with a given FDR level and computed the empirical FDR as

1� NO. of true SNPs among putative causal SNPs
NO. of putative causal SNPs

. Because a locus

includes at most 3 causal variants in our simulation, we aggregated 50
simulation replicates to improve the precision of empirical FDR.

We first evaluated the FDR calibration of compared methods.
Figure 2c shows the expected FDR and empirical FDR when Ktrue = 3
and n1 = n2 = 20,000. As expected, XMAP had well-controlled FDR
across all thresholds. By contrast, without accounting for the poly-
genic effects, SuSiEx and XMAP with Ω =0 are inflated with a very
similar pattern, suggesting they produced many false positives. To
better understand these results, we compared the variance of causal
effects (σ2

k1 and σ2
k2 for k = 1, . . . , 5) estimated by XMAP and XMAP

(Ω =0), which is equivalent to SuSiEx when there is no confounding
bias. We did not include SuSiEx in this comparison because it does not
output σ̂2

k1 and σ̂2
k2. However, we expect XMAP (Ω =0) to have similar

parameter estimates with SuSiEx because they have the same statis-
tical model and similar calibration performance. For ease of
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demonstration, we considered the case of only one causal effect, i.e.,
Ktrue = 1, and sorted σ̂2

k1 and σ̂2
k2 in decreasing order, respectively. As

such, the true causal effect with variance 0.25/500 should be captured
by the first causal component in the model. The remaining four causal
components in the model are redundant with true variance of zero. As
observed in Supplementary Figure 10, although here we set
K = 5 >Ktrue, XMAP produced unbiased estimate of σ2

k1 and σ2
k2 by tak-

ing the polygenic effects into account. In contrast, without modeling
the polygenic effects, XMAP (Ω =0) overestimated σk1 and σk2, making
its PIP inflated. PAINTORhad a satisfactoryperformancewith stringent
FDR thresholds (FDR ≤0.3) but became inflated with larger FDR
thresholds. The ad-hoc method by merging discoveries from a single-
population method produced inflated PIP because this procedure
involves a step of taking the maximum of PIP obtained from multiple
populations. Indeed, this post-selection step introduces selection bias
and inflates false positive findings. Among the single-population
methods, FINEMAP and SuSiE had satisfactory FDR with stringent
thresholds. Although SuSiE-inf can account for the polygenic effects, it
was conservative because it only used GWAS from a single population.
Furthermore, compared to SuSiE-inf, XMAP produced more stable

estimates of polygenic parameters (Supplementary Fig. 10) by taking
advantage of its algorithm design and leveraging the information of
the entire chromosome.

Next, we evaluated the statistical power of compared methods.
We excluded DAP-G in this comparison because it had inflated FDR. As
shown in Fig. 2f, XMAP was clearly the overall winner with the highest
statistical power across different FDR thresholds. It had the largest
gain when the FDR was controlled at a stringent level (e.g. FDR=0.01).
BecauseMsCAVIAR was too time-consuming to handle more than two
causal variants, we only applied MsCAVIAR to the setting with
Ktrue∈ {1, 2}. We provide the full results in Supplementary Figs. 1–3.
These results indicate that XMAP is not only well-calibrated in the
existence of polygenic effects but also achieve higher power than
existing methods. To further investigate the difference in fine-
mapping performance, we contrasted the PIP obtained by XMAP
with those obtained by other methods (Supplementary Figs. 7–9).
Clearly, XMAP produced substantially higher PIP for causal variants, as
compared to other methods, suggesting that XMAP could better dis-
tinguish causal SNPs from non-causal SNPs. This explains our obser-
vation that XMAP often yields higher statistical power. We also

Fig. 2 | Comparisons of fine-mapping approaches in the absence of
confounding bias. a Manhattan plots of a simulated GWAS data in EAS (left) and
EUR (right). All p-values are obtained from marginal regression. b Heat maps
showing the absolute correlations between the three causal SNPs (highlighted with
rectangles) and their nearby SNPs in EAS and EUR populations. c Comparisons of
FDR control with n1 = n2 = 20, 000 and Ktrue= 3. We include an ad-hoc method by
merging the discoveries from EAS and EUR (cyan triangles), which is equivalent to
controlling the FDR by using the largest PIP across populations. This post-selection
procedure introduces false positives. By contrast, XMAP is well-calibrated by

modeling cross-population GWASs through an integrated statistical framework.
d CPU timings of XMAP, MsCAVIAR, PAINTOR, FINEMAP, and DAP-G are shown for
increasing Kwith p = 100. Solid lines are CPU time recorded in our experiments and
dashed lines represent predicted CPU time based on the time complexity of cor-
responding approaches. e CPU timings are shown for increasing p with K = 2.
f Comparisons of statistical power with n1 = n2 = 20, 000 and Ktrue= 3. Computa-
tional time is presented as themean value +/- standard deviation. Results and error
bars are summarized from 50 replications.
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assessed the resolution of fine-mapping by evaluating the size of
credible sets. The smaller credible sets, the higher resolution of fine-
mapping. Here we consider XMAP, FINEMAP, SuSiEx, SuSiE-inf, and
SuSiE because they are the onlymethods that canprovide credible sets
for individual causal signals. As summarized in Supplementary Fig. 12,
XMAP was the onlymethod that could produce level-95% credible sets
with amedian size of one in all settings.We also assessed the sensitivity
and specificity under various PIP thresholds and summarized the
partial area under the receiver operating characteristic curve (pAUC)
with false positive rate (FPR) thresholds 0.1, 0.2, and 0.3 (Supple-
mentary Figs. 7–9). With FPR thresholds of 0.2, and 0.3, XMAP had the
best performance among cross-population methods when the EAS
sample size was large (n2 = 20,000). When FPR= 0.1, all methods had
similar pAUC. It is important to note that pAUC only represents the
relative rankings of true causal SNPs under an empirical FPR threshold.
Amethod can have a high pAUCbut lowpower if the PIP of all SNPs are
small. For example, although SuSiE-inf had the highest pAUC, its sta-
tistical power was much lower than XMAP. We used K = 5 for XMAP in
themain results and investigatedK = 10 in the Supplementary Figs. 1–3.
Under both settings, XMAP had consistent performance and steadily
outperformed compared methods, suggesting its robustness to the
specification of K. More comparisons under different settings of n1, n2
and Ktrue are provided in the Supplementary Figs. 1–9.

To investigate the computational efficiency,weevaluated theCPU
time of compared methods under different settings of K and p. As
shown in Fig. 2d, the computational cost of MsCAVIAR and PAINTOR
increases exponentially with bothK and p.When analyzing a locuswith
p = 100 SNPs, MsCAVIAR could only include K ≤ 4 causal signals and
PAINTOR could only include K ≤ 5 causal signals. It tookmore than one
week for them to finish the analysis when more signals were included.
By contrast, the computational cost of XMAP is linear to K, which
makes it highly efficient when applied to a locus with multiple causal
SNPs. To identify multiple causal signals, the computational efficiency
of XMAP allows us to set K to a large value (e.g., K = 10) when Ktrue is
unknown.While SuSiE-inf, SuSiEx, DAP-G, and FINEMAPhadCPU times
comparable to XMAP, they could not simultaneously leverage cross-
population GWASs and account for polygenic effects to improve fine-
mapping. This benchmark was evaluated using a Linux computing
platformwith 20 CPU cores of Intel (R) Xeon (R) Gold 6152 CPU at 2.10
GHz processor.

To assess the robustness of XMAP when the genetic effects are
different from themodel assumption,we include two sets of additional
simulation that consider the absence of polygenic effects and mis-
specified genetic effects. In the setting without polygenic effects
(Supplementary Figs. 23–30), XMAP still had comparable performance
with existing cross-population methods because we allow the poly-
genic effects to be adaptively estimated from the data. To mimic the
scenario when the XMAP assumptions on effect sizes is violated, we
conducted simulation by generating effect sizes from scaled t-dis-
tributionswith degrees of freedom16 and4 (see SupplementaryNote),
representing different levels of discrepancies from the normal dis-
tribution. Overall, XMAP performed reasonably well in controlling
false positives while achieving high statistical power when the effect
size distribution is misspecified (Supplementary Figs. 13 and 14).

In the second set of simulations, we focus on fine-mapping of
GWAS data in the presence of uncorrected confounding bias. We
introduced sample structures to GWAS data by using the genotype
principal components following a previouswork33. Specifically, we first
performed PCA on the genotypes of EAS and EUR samples separately
and extracted the first principal components (PCs) from the two
populations as representations of sample structures, denoted as PC1 2
Rn1 and PC2 2 Rn2 , respectively. We re-scaled PC1 to have mean zero
and variance 0.05 and re-scaled PC2 to have mean zero and variance
0.2. These variance values were selected to introduce the proper
level of inflation in the summary statistics. Next, we generated

quantitative phenotypes with y1 =PC1 +
PKtrue

k = 1 x1½k�β1k + e1 and
y2 = PC2 +

PKtrue
k = 1 x2½k�β2k + e2, where the generating distributions of β1k

and β2k are the same as those in the first scenario and the independent
errors were generated with e1 ∼N ð0,ð1� 5 × 10�4 ×Ktrue � 0:05ÞIn1

Þ
and e2 ∼N ð0,ð1� 5 × 10�4 ×Ktrue � 0:2ÞIn2

Þ. Finally, we simulated two
sets of GWAS summary data. The first set of GWAS data was obtained
by regressing phenotype vectors on each SNP without including the
PCs as covariates, representing the scenario with unadjusted con-
founding bias. We constructed the second set of GWAS data with
confounding bias adjusted by performing marginal regression while
including the PCs as covariates. Figure 3b shows the inflation constants
in the simulatedGWASswith confoundingbias, evaluatedbyestimated
LDSC intercepts ĉ1 and ĉ2. The inflation constants were substantially
larger than one, indicating a strong confounding bias. The confound-
ing bias became stronger when the sample size increased, suggesting
an exacerbated inflation in GWAS summary statistics. To evaluate the
performance of XMAP’s adjustment of confounding bias, we applied
XMAP and compared methods to both sets of GWAS summary statis-
tics. Aswe canobserve in Fig. 3a and Supplementary Fig. 16, all existing
methods except PAINTOR produced well-calibrated PIP when the PCs
were corrected in theGWAS summarydata, suggesting the importance
of including PC in the associationmapping stage before fine-mapping.
When the PCs were not corrected, all existing methods had different
levels of FDR inflation, suggesting that they requires correcting con-
founding factors in the association mapping stage before conducting
fine-mapping. However, in real GWAS data, many confounding effects,
such as socioeconomic status10 and geographic clustering11,12 in GWAS
samples, cannot be fully corrected by including PCs as covariates. By
contrast, XMAP was the only method that could still achieve satisfac-
tory FDR control performance by effectively correcting the con-
founding bias in GWAS data when the confounding effects are not
adjusted in the summary data. We summarized the receiver operating
characteristic (ROC) curve of compared methods in Fig. 3c. When the
PCs were corrected in GWAS summary data, XMAP had an area under
the curve (AUC) of 0.863 when the EAS cohort had a sample size of
5,000, whichwe considered as the highest achievable AUCs. When the
PCs were not corrected in GWAS summary data, XMAP could still
achieve 90.8% (0.784/0.863) of the optimal AUC. As a comparison,
MsCAVIAR only achieved 88.6% (0.765/0.863) of the optimal AUC. In
other settings (Supplementary Figs. 20–22), the AUCof XMAPwas also
comparable with other cross-population methods. This evidence
suggests that XMAP can effectively reduces the false positive findings
under the LDSC assumptions, making it more reliable than existing
methods in the presence of confounding bias. Here, we showed a
concrete examplewith a single causal signal in Fig. 3d as an illustration.
With uncorrected confounding bias, the GWAS p-values were inflated
in the left regions of the locus (first column of Fig. 3d). Without
accounting for the confounding bias, SuSiE, SuSiE-inf, and SuSiEx
produced a false positive signal (SNPs in green circles in the corre-
sponding panels of Fig. 3d) and assigned a high PIP ≈0.6 for a null SNP.
By adjusting the estimation error of GWAS effects based on inflation
constants ĉ1 and ĉ2, XMAP effectively reduced the PIP of SNPs related
to the false positive signal and correctly excluded the false positive
signal from level-95% credible sets (panel with the label ‘XMAP’ in
Fig. 3d). When we forced XMAP to ignore the inflation by setting
ĉ1 = ĉ2 = 1, the false positive signal appeared in the output (panel with
the label ‘XMAP (C=I)’ in Fig. 3 d), indicating the confounding bias was
not properly adjusted. This observation implies the effectiveness of
using the inflation constants to correct confounding bias in GWAS.

Real data analysis
We performed fine-mapping to identify putative causal SNPs of com-
plex traits with cross-population GWASs. First, by applying XMAP to
LDL GWASs, where the magnitude of confounding bias was ignorable,
we illustrated XMAP’s superior performance in improving fine-
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mapping power and resolution. Second, to investigate the ability of
XMAP in correcting confounding bias, we applied XMAP to combine
height GWASs from an EAS cohort30 and the British cohort in UKBB,
which was known to be affected by population structure11,12. Through
replication analysis,wecompared the credibility ofXMAPfine-mapped
SNPs with related methods. Third, with the confounding bias properly
corrected, we showed that XMAP enables the identification ofmultiple
causal signals within a locus. Last but importantly, we integrated the
fine-mapping output of XMAP in blood traits with single-cell data.With
the improved fine-mapping results, we canhave a better interpretation
of risk variants in their relevant cellular context, gaining biological
insights into causal mechanisms at single-cell resolution.

XMAP improves fine-mapping by leveraging genetic diversity
We first applied XMAP to analyze LDL by combining GWASs from EUR,
EAS, and AFR. As discovery cohorts, we used the GWASs of AFR and
EAS released by the Global Lipids Genetics Consortium (GLGC)34,
which were obtained based on 92,934 AFR samples and 71,150 EAS
samples, respectively. For EUR, we considered twoGWAS datasets: the
UKBB GWAS summary data released by the Neale Lab with a sample

size of 343,621 (http://www.nealelab.is/uk-biobank/), and the EUR
GWAS data from GLGC with a sample size of 664,45034. These GWAS
summary statistics included 11,569,928-35,328,891 genotyped and
imputed autosomal SNPs, minimizing the risk of omitting causal var-
iants. Details of GWAS summary statistics are summarized in Supple-
mentary Table 1. For EAS and EUR, we used the same reference LD
matrices as in our simulation studies. For AFR, we estimated the LD
matrices by using 3,072 African individuals from UKBB as reference
samples. We followed a previous work32 to partition all autosomal
chromosomes into 2763 consecutive loci, eachwith awidth of 1million
base pairs (Mbp). To fully account for LD when analyzing each 1Mbp
locus, we included all SNPs in an extended region that also covers
1Mbp before the starting position and 1Mbp beyond the ending
position of the locus, leading to a 3Mbpextended region.Weexcluded
theMHC region (25.5Mbp–33.5Mbp in chromosome 6) and two other
long-range LD regions (8Mbp–12Mbp in chromosome 8 and
46Mbp–57Mbp in chromosome 11) because many spurious results
were reported in these regions32. We applied XMAP to all regions that
have more than 100 SNPs after overlapping the reference LDmatrices
with GWAS data. Because SuSiE, SuSiE-inf, and SuSiEx achieved the

Fig. 3 | Comparisons of fine-mapping approaches in the presence of
confounding bias. a Comparison of FDR control. b Estimated LDSC intercepts ĉ1
(EAS) and ĉ2 (EUR) with sample size n2 = 20,000 in EUR and
n1∈ {5,000,10,000,15,000,20,000} in EAS. Box plot bounds show the lower,
median, and upper quartiles; whisker lengths are 1.5 times the interquartile range;
and points beyond the whiskers are outliers. c ROC curves of XMAP, PAINTOR,
MsCAVIAR, SuSiE, FINEMAP, and DAP-G with Ktrue = 1, n1 = 5000, n2 = 20,000. d An
illustrative example generated by simulation. The first column shows the
�log10ðpÞ-value in theGWASof EAS(top) andEUR (bottom) obtained frommarginal

regression without correcting the PC. The second column shows the PIP obtained
by applying SuSiE to the training data of EAS (top) and EUR (bottom). The third
column shows the PIP obtained by applying SuSiE-inf to the training data of EAS
(top) and EUR (bottom). The fourth column shows the PIP obtained from SuSiEx
(top) and XMAP by setting ĉ1 = ĉ2 = 1 (bottom). The last panel shows the PIP
obtained from XMAP with c1 and c2 estimated from the data. Red dots represent
causal SNPs. Circles in the same color represent SNPs in the level-95% credible sets
of a causal signal. Results are summarized from 50 replications.
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best performance among existing methods in our simulation studies,
we applied them to the GWAS of LDL, serving as a baselines for com-
parison. We set K = 10 in all compared methods.

Wefirst quantified the confounding bias in theseGWASdata using
the estimates of LDSC intercepts. As shown in Supplementary Table 1,
the LDSC intercepts estimated from all LDL GWASs were not sub-
stantially different from one, suggesting an ignorable confounding
bias here. We then summarized the fine-mapped SNPs in Fig. 4a. By
combining GWAS data from different populations, XMAP consistently
identifiedmore causal signals than SuSiE with different PIP thresholds.
Specifically, XMAP identified 149 SNPswith PIP > 0.8 and 145 SNPswith
PIP > 0.9 when the GWASs from all three populations were jointly
analyzed, which was three times more than the number of SNPs
identified by SuSiE in EUR (50 SNPs with PIP > 0.8 and 45 SNPs with
PIP > 0.9). To assess the credibility of the putative causal SNPs, we
evaluated the replication rate using an independent LDL GWAS34 from
the EUR population with a median sample size of 85785 (see Supple-
mentary Table 1). We computed PIP in this replication cohort using
SuSiE and summarized the replication performance in Supplementary
Fig. 31. Clearly, XMAP was the overall winner with the highest repli-
cation rate under various PIP thresholds. As expected, directlymerging
SuSiE discoveries across single population analyses (denoted as SuSiE-

merge) had a much lower replication rate than XMAP. For example,
when GWASs from all three populations were combined, with a PIP
threshold of 0.8, 25.5% (38/149) SNPs identified by XMAP had PIP > 0.1
in the replication cohort. With the same PIP threshold, only 18.9% (32/
109) SNPs identified by the merging procedure had PIP > 0.1 in the
replication cohort. With a more stringent PIP of 0.99, 31% (31/100)
SNPs identified by XMAP had replication PIP > 0.1. As a comparison,
there were only 18.9% (24/127) SNPs identified by the merging proce-
dure that had PIP > 0.1. Therefore, directly merging the findings of
single-population methods is not an optimal way to combine cross-
population GWASs because it can introduce post-selection bias. The
complete fine-mapping results are available at https://github.com/
YangLabHKUST/XMAP/tree/main/results.

The improved statistical power of XMAP could be attributed to its
capacity of leveraging genetic diversity. To see this, we checked the LD
score which is a summation of the squared correlation between a SNP
and other SNPs in a population. A large LD score of a SNP means that
this SNP has strong LD with many other SNPs. We observed that the
XMAP fine-mapped SNPs have the smallest LD scores in AFR (Fig. 4c),
suggesting the power gain ofXMAP couldbe attributed to theweak LD
between causal SNPs and non-causal SNPs in AFR. As an example,
rs900776 is an intronic variant in the DMTN region, which is highly

Fig. 4 | Application of XMAP and SuSiE to LDL GWAS from EUR (n = 343,621),
AFR (n = 92,934), and EAS (n = 71,150). a The number of causal signals identified
by XMAP and SuSiE with PIP thresholds 0.8, 0.9, 0.95, and 0.99. Colors represent
different combinations of GWAS training data. b Box showing the LD score dis-
tribution of putative causal SNPs identified by XMAP. Box plot bounds show the
lower, median, and upper quartiles; whisker lengths are 1.5 times the interquartile
range; and points beyond the whiskers are outliers. c–f Fine-mapping of locus
21.4Mbp–22.4Mbp in chromosome8.Thefine-mappingmethodsand trainingdata

are labeled on top of each panel. The top panels show the PIP. SNPs within the 99%
credible set are highlighted with red circles. Middle panels show the
�log10ðp�valueÞ in GWAS. Red dashed lines represent 5 × 10−8. Blue dashed lines
represent 1 × 10−6. The bottom panels annotate the position of genes in the locus.
g Absolute correlation in EUR and AFR among the SNPs within the level-99%
credible set as shown in the red circles of (c). The SNP rs900776 is highlighted in the
heat map.
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correlated with surrounding SNPs in EUR. Because of this, SuSiE esti-
mated the PIP of rs900776 as small as 0.002 using UKBB GWAS and
produced a very large 99% credible set that included 16 other SNPs for
this signal. When applying SuSiE to the larger EUR GWAS data from
GLGC, the PIP of SNP rs900776 increased from 0.002 to 0.6 (Fig. 4d).
Different from the LDpattern in Europeanpopulation, rs900776 is less
correlatedwith nearby SNPs in African population (Fig. 4g). Therefore,
when SuSiE was applied to AFR GWAS, the estimated PIP of rs900776
increased to 0.9 (Fig. 4e). Unlike SuSiE which analyzes a single popu-
lation at a time, XMAP enables joint analysis of EUR and AFR GWASs.
XMAP successfully identified SNP rs900776 with a PIP as high as 0.99,
yielding a high-resolution credible set which contains rs900776 only
(Fig. 4f). This indicates the improved power and resolutionof XMAPby
leveraging genetic diversity.

XMAP enables the correction of confounding bias in fine-
mapping
To demonstrate the effectiveness of XMAP in the correction of con-
founding bias, we applied XMAP to the height GWASs which were well
known to be affected by population structure11,12. Following the pre-
vious cross-population fine-mapping pipeline35, we first applied fine-
mappingmethods to discoveryGWASdatasets, and then evaluated the
credibility of fine-mapped SNPs in replication datasets from different
population backgrounds. Here, we used the EUR GWAS from UKBB
and a Chinese GWAS in our previous study30 as discovery cohorts. For
replication, we considered a recently released within-sibship GWAS
fromEuropeanpopulation,whichwas known tobe less confoundedby
population structure. We also included the GWAS from BBJ cohort as
replication data from EAS background. To ensure the SNP density,
theseGWASswere imputed to cover 3,776,576–12,515,778 variants (see
Supplementary Table 1). The LDSC intercepts of UKBB GWAS and BBJ
GWAS were estimated as 1.66 (s.e. = 0.042) and 1.39 (s.e. = 0.024),
respectively, indicating the presence of strong confounding bias. The
LDSC intercepts of EUR Sibship GWAS and Chinese GWAS were esti-
mated as 1.07 (s.e. = 0.0089) and 1.12 (s.e. = 0.012), suggesting that the
confounding bias is nearly ignorable.

We summarized the replication rates of fine-mapped SNPs in
Fig. 5. Overall, XMAP had the best replication performance. Among
the overlapped SNPs between the EUR Sibship GWAS and discovery
cohorts, SuSiE detected 306 SNPs with PIP > 0.8 from UKBB GWAS.
However, only 14.1% (43/306, Fig. 5a) were found to be genome-
wide significant and only 13.4% of them (41/306, Fig. 5b) had PIP >
0.1 in the EUR Sibship replication cohort. The low replication rate
suggests that these SNPs could be false positive signals due to
unadjusted confounding bias. Consistent with our observation in
the analysis of LDL GWAS, the replication rate of SuSiE-merge was
even lower because it introduced post-selection bias. Although
SuSiEx identified more SNPs by incorporating cross-population
GWASs, a large proportion of them could not be replicated. By
adjusting the confounding bias, XMAP successfully reduced the
number of false positive signals. For example, using PIP > 0.8 as a
threshold, 21.4% (44/206) SNPs detected by XMAP were genome-
wide significant and 21.4% (44/206) had PIP > 0.1 in EUR Sibship
replication cohort. A similar pattern can be observed in the BBJ
replication cohort. With a PIP threshold of 0.8, only 23.9% (54/226,
Fig. 5c) SNPs detected from UKBB GWAS by SuSiE were genome-
wide significant and 8.8% (19/226, Fig. 5d) had PIP > 0.1 in BBJ GWAS.
As a comparison, 42.3% (71/168) SNPs detected by XMAP were
genome-wide significant and 14.9% (25/168) had PIP > 0.1 in BBJ
replication cohort. The higher replication rate of XMAP implies its
effectiveness of fine-mapping by accounting for confounding bias.

Although PAINTOR and MsCAVIAR can also integrate cross-
population GWASs, they are too time-consuming to analyze all loci on
the genome. Here, we consider a concrete example to compare the
performance of cross-population methods in the presence of

confounding bias (Fig. 5). For XMAP, we considered two settings: (i)
the standard XMAP that used the estimated inflation constants (c1 and
c2) to correct the confounding bias; (ii) a special case of XMAP forced
not to correct the confounding bias by setting c1 = c2 = 1, denoted as
‘XMAP (C=I)’. In this example, the SNP rs2053005 locating at the locus
66.55Mbp–66.85Mbp in chromosome 15 was significantly associated
(p-value < 10−6) in UKBB GWAS (Fig. 5e), but not significant in both
Chinese GWAS and EUR Sibship GWAS (Fig. 5f, g). When UKBB and
Chinese cohorts were combined for cross-population fine-mapping,
the PIP of rs2053005 was computed to be >0.8 by SuSiEx, PAINTOR,
MsCAVIAR, and XMAP (C=I) without accounting for confounding bias.
After correcting for confounding bias, the PIP of this signal dramati-
cally decreased inXMAPwith a PIP < 0.05, which suggests that the high
PIP of the SNP could have been caused by population stratification
(Fig. 5h). To test our assumption, we applied cross-population meth-
ods to combine Chinese and EUR Sibship GWASs, both of which are
known to be less influenced by population structure. As expected, all
methods consistently yielded a low PIP for rs2053005 (Fig. 5i). This
observation confirmedour assumption that rs2053005 couldbe a false
positive and XMAP was able to exclude this signal by correcting the
confounding bias.

XMAP enables identification of multiple putative causal signals
in fine-mapping
With the confounding bias properly corrected, XMAP’s efficient algo-
rithmallows us toproduce reliablePIP for identifyingmultiple putative
causal variants in thousands of loci across the whole genome. As
summarized in Fig. 6a, with a PIP threshold of 0.5, XMAP identified 55
loci harboring more than one putative causal SNPs of height by
combing UKBB and Chinese GWASs, among which 6 loci harbor more
than 3 causal SNPs and 2 loci harbor 5 causal variants. With a stringent
threshold PIP = 0.9, XMAP identified 15 loci with 2 causal SNPs and 9
loci with 3 causal SNPs. To examine the reliability of putative causal
SNPs in loci harboring multiple causal signals, we evaluated the repli-
cation rates of these SNPs using the Sibship GWAS. Figure 6b and c
compare the replication rates of XMAP and SuSiE using their putative
causal SNPs with a PIP threshold of 0.9. For loci with more than one
putative causal SNPs, XMAP had the best replication rate (i.e., 24/
55 = 43.6% SNPs had p-values < 10−6 and 14/55 = 25.5% SNPs had PIP >
0.1). Although SuSiE and SuSiEx can also identify multiple causal sig-
nals (Supplementary Fig. 34), they had lower replication rates than
XMAP because they cannot correct for confounding bias. For loci with
more than two putative causal SNPs, XMAP outperformed SuSiEx and
had similar replication rate with SuSiE applied to EUR GWAS. Although
PAINTOR and MsCAVIAR can also integrate cross-population GWASs,
they are too time-consuming to analyze all loci on the genome when
the number of causal signals are set to be larger than 2. We could only
run PAINTOR by setting the number of causal signals to 1 and 2.
However, PAINTOR often produced unrealistic PIP for loci containing
thousands of variants (Supplementary Figs. 34 and 35). Here, we
compared the PIP of SNPs computed by XMAP with SuSiEx, PAINTOR
and MsCAVIAR using the locus 130.2Mbp–130.5Mbp in chromosome
6 as an example. We first combined the GWASs of UKBB (Fig. 6b) and
Chinese (Fig. 6c). Clearly, all compared methods suggest that both
rs1415701 and rs6569648 hadhigh probability to be causal (Fig. 6e). To
test the robustness of compared methods, we replaced the UKBB
GWAS with EUR Sibship GWAS (Fig. 6d) which has smaller sample size
but is less influenced by confounding bias, and computed the PIP again
(Fig. 6f). Because of the reduced sample size, the PIP of rs6569648
computed by MsCAVIAR reduced to 0.78; the PIP computed by
PAINTOR substantially differed from its previous output. By contrast,
only XMAP and SuSiEx consistently produced high PIP for rs1415701
and rs6569648 (PIP > 0.8).

In the main analysis, we set K = 10 to allow the detection of mul-
tiple causal variants. The setting K = 10 was supported by the analysis
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of height as summarized in Fig. 6, where most loci had < 5 causal
variants in height. To investigate the sensitivity of fine-mapping per-
formance to the parameter K, we further considered K = 15 for XMAP
and SuSiE. As shown in Supplementary Fig. 32, the number of putative
causal SNPs identified by XMAP are highly consistent under different
settings of K. Besides, the fine-mapped SNPs could be replicated in a
consistent rate under different settings of K (Fig. 5a–d and Supple-
mentary Fig. 32). These evidence consolidate our conclusion of the
XMAP’s robustness to the setting of K.

TheXMAPoutput improves the interpretation of risk variants in
their relevant cellular context at single-cell resolution
Integration of fine-mapping results with single-cell datasets is expec-
ted to offer a better interpretation of putative causal variants in their

relevant cellular context at single-cell resolution6. However, fine-
mapping of an under-presented population often lacks statistical
power due to the limited sample size, making the interpretation of
causal risk variants difficult. In this section, we show that cross-
population fine-mapping results given by XMAP can greatly improve
the interpretation of putative causal variants in their relevant cellular
context by integrating single-cell datasets. To illustrate this benefit, we
carried out SCAVENGE6 analysis to quantify the enrichment of putative
causal variants for 12 blood traits (summarized in Supplementary
Table 1) within regions of accessible chromatin using the single-cell
assay for transpose-accessible chromatin by sequencing (scATAC-seq).
We employed a scATAC-seq dataset that encompasses multiple
hematopoietic lineages36, which includes 33,819 cells from 18 hema-
tological populations (Fig. 7a). Specifically, we have a matrix of

Fig. 5 | Replication analysis of XMAP and related methods on height GWASs.
a–d Overview of replication analyses of high-PIP fine-mapped SNPs across popu-
lations: bar charts showing the fraction and number of fine-mapped SNPs with p-
value < 5 × 10−8 in the replication cohorts of EUR Sibship GWAS and BBJ cohorts and
bar charts showing the distribution of PIP forfine-mapped SNPs computedbySuSiE
in the replication cohorts of EUR Sibship GWAS and BBJ. Values for counts < 4 are
not shown in the figure. e–i Fine-mapping of locus 66.55Mbp–66.85Mbp in chro-
mosome 15. The SNP rs2053005 is significant (p-value < 1 × 10−6) in UKBB, but not
significant in Chinese GWAS and EUR Sibship GWAS. When UKBB and Chinese
cohorts were combined for cross-population fine-mapping (h), the PIP of

rs2053005 was computed to be > 0.8 by PAINTOR, MsCAVIAR, SuSiEx, and XMAP
whenwe set c1 = c2 = 1 (XMAPC=I). XMAP estimated the inflation constants of UKBB
and BBJ as 1.66 and 1.39, suggesting they are influenced by confounding bias. After
correcting for confoundingbias, this signal was excluded inXMAPwith a PIP < 0.05,
which suggests that the high PIP of the SNP could have been induced by uncor-
rectedpopulation stratification. To test our assumption, we combined Chinese and
EUR Sibship GWASs, which are both less influenced by confounding factors (both
with inflation constant estimated as 1.07). As expected, all methods consistently
produced a low PIP for rs2053005 (i), which confirmed our assumption and sug-
gested XMAP can reduce spurious signals.
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fragment counts F 2 RC × L, where C is the number of cells in scATAC-
seq data and L is the number of accessible chromatin peaks. To
quantify the relevance between the peaks and a phenotype, we first
used theXMAPoutput to compute a vector ofweightη 2 RL with the l-
th element of η being the sum of XMAP PIP for SNPs within the
genomic region of peak l, which indicates the relative importance of a
peak to the phenotype. The raw cell-trait relevance scores could be
computed as t = Fη. As such, trait-related cells tend to have larger
scores because more causal SNPs are located within their accessible
chromatin regions. Then a Z-score characterizing the relationship
between each pair of cell and trait can be obtained by further cor-
recting for technical confounders, such as GC content bias and PCR
amplification, using g-chromVAR5. To optimize the inference by
leveraging relatedness across individual cells, we constructed a cell-
cell similarity network and applied SCAVENGE6 to assign a trait-
relevance score (TRS) for each cell via networkpropagation. Finally, we
simulated null distributions of TRS by using random seed cells for
propagation and computed a p-value of trait-enrichment for each cell.

The cells with p-value < 0.05 were considered as significantly enriched
for the trait.

We summarized the identified trait-enriched cells and themedian
TRSof each cell type in Fig. 7b and Supplementary Fig. 35, respectively.
As we can observe, the enriched cells were highly aligned with our
knowledge of cell types related to the blood traits. For example, we
identified 8388 lymphocyte count (Lym)-related cells, among which
5021 cells were CD4 cells and 2272 were CD8 cells. For traits related to
myeloid/compound white cells, including eosinophil count (Eosino),
monocyte count (Mono), neutrophil count (Neutro) and white blood
cell count (WBC), we observed a substantial number of enriched cells
from the CD14+ monocytes. For traits related to red cells such as red
blood cell count (RBC), mean corpuscular hemoglobin (MCH), mean
corpuscular hemoglobin concentration (MCHC), mean corpuscular
volume (MCV), and hemoglobin (HB), a large amount of enriched cells
were erythroid cells. These observations indicate that the biological
mechanisms of putative causal SNPs identified by XMAP can be inter-
preted at single-cell resolution. Due to the unbalanced cell type

Fig. 6 | Performance of XMAP in identifyingmultiple causal variants for height.
a Distributions of the number of putative causal SNPs identified by XMAP under
different PIP thresholds. b With a PIP threshold of 0.9, the p-value distributions in
the Sibship GWAS replication cohort are shown for putative causal SNPswithin loci
harboring > 1 and > 2 putative causal SNPs. c With a PIP threshold of 0.9, the PIP
distributions in the Sibship GWAS replication cohort are shown for putative causal

SNPs within loci harboring > 1 and > 2 putative causal SNPs. d–h A demonstrative
example using the locus 130.2 Mbp–130.5Mbp in chromosome 6. Manhattan plots
of the locus are shown forUKBBGWAS in (d), ChineseGWAS in (e), and EURSibship
GWAS in (f). The PIP of SNPs in target locus are computed by XMAP, SuSiEx,
PAINTOR and MsCAVIAR with GWASs of UKBB+Chinese (g) and Sibship+Chi-
nese (h).
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composition in the single-cell dataset, cells from rare populations can
be under-represented. To rule out the influence of cell type compo-
sition on our analysis, we further investigated the proportion of trait-
relevant cells within each cell type. We observed that biologically
related cell types had largest proportion of enriched cells. For exam-
ple, MCV was significantly enriched in 99.3% of late stage erythroid
cells (Fig. 7e, f), WBC was significantly enriched in more than 60% of
CD14+ monocytes (Fig. 7i, j), Lym was significantly enriched in a large
proportion of CD4 and CD8 cells (Fig. 7c, d), and Plt was significantly
enriched in the erythroid cells (Fig. 7g, h). These results suggest that
the identification of trait-relevant cells is immune to the cell type
composition. As shown in Supplementary Figs. 36–47, we compared
the trait-relevant cells obtained by using the XMAP PIP as input with
those using the SuSiE PIP from single population analysis as input. Due
to the relatively smaller sample size in the BBJ cohort, the trait-relevant
cells were less enriched when fine-mapping was performed only using
the BBJ GWASs, including GWASs of lymphocyte count (Supplemen-
tary Fig. 36 c, d), eosinophil count (Supplementary Fig. 41 c, d), and
basophil count (Supplementary Fig. 40c, d). Comparedwith the single-
populationfine-mapping result by SuSiE,XMAPcan take the advantage
of well-powered UKBB GWASs and provide a more accurate fine-
mapping result (Supplementary Figs. 36 a, b, 41 a, b, 40 a, b). By
integrating with single-cell datasets, the fine-mapping results given by
XMAP can offer a better understanding of the putative causal variants
in their cellular context at single-cell resolution.

Discussion
In this paper, we have introduced a novel method named XMAP for
cross-population fine-mapping. XMAP is able to improve the statistical

power of fine-mapping by leveraging heterogeneous LD patterns
across multiple populations. By correcting the hidden confounding
bias in GWAS summary statistics, XMAP can effectively reduce spur-
ious causal signals induced by sample structure. XMAP’s fast algorithm
allows us to efficiently analyze loci that harbour multiple causal SNPs.
Through comprehensive simulations, we showed that XMAP has
greater statistical power, better control of false positive rate, and
substantially higher computational efficiency for identifying multiple
causal signals. We applied XMAP to fine-map causal SNPs of LDL by
combining GWASs from EAS, EUR and AFR, achieving substantial gains
in statistical power. Furthermore, we showed that XMAP was able to
exclude spurious signals and produced reproducible results. By com-
bining the output of XMAP for blood traits with scATAC-seq profiles of
hematopoietic cells, we illustrated that the output of XMAP was par-
ticularly helpful to characterize the causal mechanism behind pheno-
typic variation at single-cell resolution. We believe that XMAP can
serve as a powerful analytic tool of fine-mapping.

To leverage the genetic diversity from cross-population GWASs, a
very recent method, SuSiEx28, was proposed as a simple extension of
SuSiE to the cross-population setting. AlthoughXMAP and SuSiEx have
the same goal to leverage genetic diversity by extending the SuSiE
framework, XMAP is unique in the following two aspects. First, XMAP
introduces an additional genetic component to capture the dense
polygenic effects. The inclusion of polygenic effects not only improves
the calibration and power of fine-mapping in the presence of non-
sparse polygenic effects, it also protects the statistical inference
against overfitting when K is specified larger than the ground truth.
Second, XMAP can correct confounding bias in GWAS summary sta-
tistics. As such, XMAPproduces better calibrated PIP in thepresenceof

Fig. 7 | Enrichment of blood cell traits in hematological populations using
XMAP fine-mapped SNPs as input. a The two dimensional uniform manifold
approximation and projection (UMAP) plot of scATAC-seq data for 18 hematolo-
gical populations. b The bar plots showing the number of cells significantly

enriched in each of the 12 blood traits. The TRS are shown in the UMAP coordinates
for four representative traits: Lym (c), MCV (e), Plt (g), and WBC (i). The propor-
tions of significantly enriched cells within each population are shown for Lym (d),
MCV (f), Plt (h), and WBC (j).
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confounding bias. This is critical for improving the reproducibility in
real data analysis.

Considering the polygenic nature of complex traits, XMAP takes
the polygenic effects into account while modeling the major causal
effects. The inclusion of polygenic effects benefits fine-mapping in two
aspects. First, it captures the small genetic effects, allowing us to focus
on the causal SNPs with major genetic impact that can be more bio-
logically interesting for downstream analysis. We verified that the
inclusion of the polygenic effects improved the calibration and power
in comprehensive simulation studies and offered better reproduci-
bility in real data analyses. Second, the statistical inference of causal
effects are protected against over-fitting when K is specified larger
than the ground truth. Therefore, we can safely set K to be a larger
number, when the ground truth is unknown (Supplementary Fig. 10). A
recent study also proposed to account for the polygenic effects in fine-
mapping25. In particular, SuSiE-inf proposed in this work is similar to
XMAP as they both extend SuSiE by incorporating a component of
dense polygenic effects in addition to the sparse causal effects cap-
tured by SuSiE’s sum-of-single-effects models. Despite this similarity,
XMAP is different from SuSiE-inf in three aspects. First, XMAP can
achieve higher power by leveraging the different LD structures of
genetically diverged populations. Second, XMAP corrects confound-
ing bias under the LDSC assumption, which further reduces false
positive findings and improves replication rates. Third, XMAP esti-
mates the variance of polygenic effects in a different way than SuSiE-
inf. SuSiE-inf uses local SNPs in the target region to estimate model
parameters, whose variance highly depends on the GWAS sample size.
In contrast, as described in the Method section, XMAP first uses SNPs
from the whole-genome to estimate the variance of polygenic effects
with LDSC, and then fixes these parameters at their estimates and runs
the variational EM algorithm that only updates the parameters of
causal effects Σ. This two-step algorithmic design not only improves
the convergence of the variational EM algorithm by reducing the
number of parameters but also offers a stable estimate of the poly-
genic effects. Because SNPs from the entire genome are used for
estimation, the parameter estimates of the polygenic component are
much more accurate and stable.

Identifying the tissue and cellular context of causal variants is a
critical step to understand their biological mechanisms. Existing
methods are usually limited to investigation at tissue37–44 or cell type
levels45–49, which do not fully utilize the rich resources of single-cell
profiles. An important feature of XMAP is that it produces outputs that
can be integrated with single-cell profiles to illuminate the cellular
context of putative causal SNPs at single-cell resolution, offering a
uniqueopportunity to characterize thebiologicalmechanisms across a
whole spectrum of cell functions.

Although it is convenient to work with GWAS summary statistics,
fine-mapping requires a population-matched reference LDmatrix as an
input. The inconsistency of LD patterns between reference samples
andGWAS samples can lead to false positive findings24,50–52. In ourmain
analysis, we have used the in-sample LD references for EAS and UKBB
GWAS to minimize the risk of LD mismatching. In practice, if an in-
sample LD reference is not available, some diagnostic tools such as
SLALOM51 and DENTIST50 should be carried out to validate the fine-
mapping results and remove suspicious signals.

Our XMAP approach needs more investigation in the following
directions. First, similar to PAINTOR and MsCAVAIR, XMAP assumes
that the causal variants are shared across populations. Recent studies
have reported that some causal signals could be specific to a certain
population53. Hence, extending XMAP to handle the population-
specific causal effects may yield biologically interesting discoveries.
Second, causal variants are reported to be distributed dis-
proportionately in the genome, depending on the functional context
of the genomic regions18,26,32,54. Some recent methods incorporate the
information of functional annotation to improve fine-mapping18,26,32. It

is interesting to incorporate functional annotations in the causal
inference of XMAP, which may further boost the statistical power of
fine-mapping. Third, gene-level effects can be more stably shared
across populations, as compared to SNP-level effects. A recent study55

suggests that the correlation of gene-level effects is 20% stronger than
SNP-level effects across populations. Therefore, leveraging the genetic
diversity at the gene-level for fine-mapping can be also an interesting
direction.Wewill explore thesepotential extensions in the near future.

Methods
The XMAP model
We begin with the probabilistic formulation of XMAP with individual-
level GWAS data. For easier introduction, we consider the case of two
populations for easier introduction but note XMAP that is generally
applicable to analyze multiple populations. Let {y1,X1} and {y2,X2} be
the GWAS datasets collected from two different populations, where
y1 2 Rn1 and y2 2 Rn2 are phenotype vectors, X1 2 Rn1 ×p and X2 2
Rn2 ×p are genotype matrices, p is the number of SNPs in the locus of
interest, and n1 and n2 are the GWAS sample sizes of populations 1 and
2, respectively. With different recombination rates, the two popula-
tions tend to have different LD patterns, i.e., the correlations among
columns of X1 are usually distinct from those of X2. Without loss of
generality, we assume that the columns of X1 and X2 have been stan-
dardized to have zeromean and unit variance. To relate genotypes and
phenotypes, we consider the following linear models:

y1 = X1b1 +X1ϕ1 + e1,

y2 = X2b2 +X2ϕ2 + e2,
ð1Þ

where b1 2 Rp and b2 2 Rp are sparse vectors of causal effects with
major impact on phenotypes, ϕ1 = ½ϕ11,ϕ12,:::,ϕ1p�T 2 Rp and
ϕ2 = ½ϕ21,ϕ22,:::,ϕ2p�T 2 Rp are dense vectors capturing the polygenic
effects56, and e1 ∼N ð0,σ2

e1
In1

Þ and e2 ∼N ð0,σ2
e2
In2

Þ are vectors of
independent noises from populations 1 and 2, respectively. Here, we
assume that the covariates (e.g., sex, age, and principal components)
have been adjusted. The detailed treatment of covariates follows our
previous works30,57. Unlike previous methods that only consider the
overall genetic effects17–20,22, we separate the genetic effects into causal
and polygenic components. This decomposition allows us to focus on
the causal SNPs with major genetic impact b1 and b2 that can be more
biologically interesting for downstream analysis. Accumulating evi-
dence of a shared genetic basis across populations26,27,30,58,59 implies
that b1 and b2 tend to have the same set of nonzero entries. Therefore,
we expect that the different LD patterns inX1 andX2 can be helpful for
fine-mapping shared causal SNPs across populations.

To leverage the cross-population GWASs for fine-mapping, we
propose to specify model (1) by decomposing the causal genetic
effects b1 and b2 into K ‘single effects’:

y1 =X1
PK
k = 1

γkβ1k +X1ϕ1 + e1,

y2 =X2
PK
k = 1

γkβ2k +X2ϕ2 + e2,

ð2Þ

whereβ1k andβ2k areeffect sizes of the k-th causal signal inpopulations
one and two, respectively, γk = ½γk1,:::,γkp�T 2 f0,1gp in which only one
element is 1 and the rest are 0 with γkj = 1 indicating the j-th variant is
responsible for the k-th causal signal. This formulation of XMAP has
three salient properties. First, through the shared causal status γk,
XMAP can leverage the distinct LD patterns between X1 and X2.
Meanwhile, we allow the two populations to have different effect sizes
β1k and β2k. Second, the decomposition of the causal signals into K
single causal effects not only allows us to characterize each individual
causal signal with an associated credible set23 but also offers a com-
putational advantage over existing methods, as we shall see later.
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Third, the inclusion of the polygenic component also protects the
statistical inference against over-fitting when K is specified larger than
the ground truth. With this property, we can safely set K to be a
reasonably large number, say K = 10 by default, when the ground truth
is unknown. To infer the causal status γk, we specify the probabilistic
structures for the genetic effects in model (2) as follows:

γk ∼Multð1,½1=p,:::,1=p�T Þ,
β1k

β2k

� �
∼N 0,Σk

� �
, for k = 1,:::,K ,

ϕ1j

ϕ2j

" #
∼N ð0,ΩÞ, for j = 1,:::,p,

ð3Þ

where Mult(1, [1/p, . . . , 1/p]T) denotes the non-informative categorical
distribution of class counts drawn with class probabilities given by 1/p
for each SNP, N 0,Σk

� �
and N 0,Ωð Þ denote the multivariate normal

distributions with mean 0 and covariance matrices Σk =
σ2
k1 σ2

k12
σ2
k12 σ2

k2

� �

and Ω=
ω1 ω12
ω12 ω2

� �
, respectively. The variance components

Σ = {Σ1, . . . , ΣK} capture the genetic covariance of the two populations
attributed to the K causal effects, and Ω captures the genetic
covariance attributed to the polygenic effects.

So far, we have assumed the covariates have been adjusted. In the
presence of covariates, we can extend XMAP model in Equation (2) as

y1 =W1u1 +X1
PK
k = 1

γkβ1k +X1ϕ1 + e1,

y2 =W2u2 +X2
PK
k = 1

γkβ2k +X2ϕ2 + e2,

ð4Þ

where W1 2 Rn1 ×q1 and W2 2 Rn2 ×q2 are the covariate matrices of
populations 1 and 2, respectively, and u1 2 Rq1 and u2 2 Rq2 are cor-
responding vectors of covariate effects. To adjust the covariates, we
first construct the projection matrices P1 = I�W1ðWT

1 W1Þ
�1
WT

1 and
P2 = I�W2ðWT

2W2Þ
�1
WT

2 . ThenwemultiplyP1 on both sides of the first
equation and P2 on both sides of the second equation in model (4).
Through this projection, we can obtain a model without covariates

yP1 =X
P
1

PK
k = 1

γkβ1k +X
P
1ϕ1 + e

P
1 ,

yP
2 =X

P
2

PK
k = 1

γkβ2k +X
P
2ϕ2 + e

P
2 ,

ð5Þ

where yP
1 =P1y1, yP

2 =P2y2, XP
1 =P1X1, XP

2 =P2X2, eP1 =P1e1, and
eP2 =P2e2. As we can observe, model (5) reduces tomodel (2).With this
equivalence, we can work with model (2) without loss of generality.

The XMAP model for summary-level data
Due to privacy concerns, the individual-level GWAS data may not be
easily accessible. Given this situation, we consider the summary-level
GWAS data fb̂1,ŝ1g= fb̂1j,ŝ1jgj = 1,:::,p and fb̂2,ŝ2g= fb̂2j ,ŝ2jgj = 1,:::,p obtained
from simple linear regressions:

b̂1j =x
T
1jy1=x

T
1jx1j , ŝ1j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjy1 � x1j b̂1jjj22=ðn1x

T
1jx1jÞ

q
,

b̂2j =x
T
2jy2=x

T
2jx2j, ŝ2j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjy2 � x2j b̂2jjj22=ðn2x

T
2jx2jÞ

q
,

ð6Þ

where x1j 2 Rp and x2j 2 Rp denote the j-th column of X1 and X2,
respectively. To derive XMAP with summary-level data, we consider
the rows of X1 and X2 as independently and identically distributed
samples drawn from the two populations, respectively. Then, we
define the LD matrices R1 = fr1jlg 2 Rp×p and R2 = fr2jlg 2 Rp×p, where

r1jl =E½xT
1jx1l=n1� and r2jl =E½xT

2jx2l=n2� denote the correlation between
variants j and l in populations 1 and 2, respectively. We can then obtain
the expectation of GWAS effect sizes conditional on b and ϕ:

E b̂1jb1,ϕ1

h i
=E XT

1 X1ð
PK
k = 1

γkβ1k +ϕ1Þ+XT
1 e1

 !
=n1jb1,ϕ1

" #
=R1

PK
k = 1

γkβ1k +R1ϕ1,

E b̂2jb2,ϕ2

h i
=E XT

2X2ð
PK
k = 1

γkβ2k +ϕ2Þ+XT
2 e2

 !
=n2jb2,ϕ2

" #
=R2

PK
k = 1

γkβ2k +R2ϕ2:

ð7Þ

With this expression, we can connect b and ϕ with GWAS summary
data with the following model:

b̂1 =R1
PK
k = 1

γkβ1k +R1ϕ1 + ϵ1, Varðϵ1Þ= Ŝ1R1Ŝ1,

b̂2 =R2
PK
k = 1

γkβ2k +R2ϕ2 + ϵ2, Varðϵ2Þ= Ŝ2R2Ŝ2,

ð8Þ

where Ŝ1 2 Rp ×p and Ŝ2 2 Rp×p are diagonal matrices with diagonal
terms given as fŜ1gjj = ŝ1j and fŜ2gjj = ŝ2j for j = 1, . . . , p, respectively
(see Supplementary Note). To obtain a likelihood function of summary
level data, we impose normal distributions for b̂1 and b̂2, and Eq. (8)
becomes the following model:

b̂1 ∼N R1
PK
k = 1

γkβ1k +R1ϕ1,Ŝ1R1Ŝ1

 !
,

b̂2 ∼N R2
PK
k = 1

γkβ2k +R2ϕ2,Ŝ2R2Ŝ2

 !
:

ð9Þ

Note that model (8) or model (9) is derived by assuming that all the
population structures have been properly adjusted in the GWAS
summary statistics. To account for the unadjusted confounding bias
hidden in GWAS summary statistics, we extend Equation (1) under the
genetic drift model of LDSC33 (see SupplementaryNote).We show that
model (9) is modified accordingly as

b̂1 ∼N R1
PK
k = 1

γkβ1k +R1ϕ1,c1Ŝ1R1Ŝ1

 !
,

b̂2 ∼N R2
PK
k = 1

γkβ2k +R2ϕ2,c2Ŝ2R2Ŝ2

 !
,

ð10Þ

where c1 and c2 are LDSC intercepts that indicate the magnitude of
inflation in GWAS effect sizes due to confounding bias. In the absence
of confounding bias, the values of inflation constants c1 and c2 are close
to one. As observed in biobank-scale GWASs11–13,57, the inflation
constant is often larger than one in the presence of confounding bias.
These inflation constants in the variance term of model (10) can re-
calibrate the GWAS standard error based on the magnitude of
confounding effects. The SNP correlation matrices R = {R1,R2} can be
estimated with genotypes either from subsets of GWAS samples or
from population-matched reference panels. Under model (3) and (10),
we denote the collection of unknown parameters θ = {Σ,Ω, c1, c2}, and
the collections of latent variables ϕ = {ϕ1,ϕ2}, γ = fγkgk = 1,:::,K and
β= fβ1k ,β2kgk = 1,:::,K . We shall obtain the parameter estimates θ̂ and
identify causal SNPs with the posterior

Prðγ,β,ϕjb̂,ŝ,R; θ̂Þ= Prðb̂,γ,β,ϕjŝ,R; θ̂Þ
Prðb̂jŝ,R; θ̂Þ

: ð11Þ

Algorithm and parameter estimation
We adopt a two-step procedure in the XMAP algorithm. In the first
step, we apply LDSC to estimate the parameters c1, c2, and Ω using
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summary statistics across the whole genome. This can be achieved
based on the LDSC assumption33. This step helps to pre-estimate
model parameters using genome-wide information and reducesmodel
variance. For Ω, the diagonal terms ω1 and ω2 are estimated with the
per-SNP heritabilities of the corresponding populations using LDSC.
The off-diagonal term ω12 is estimated by the per-SNP co-heritability
obtained via bi-variate LDSC. The inflation constants c1 and c2 are
estimated by the intercepts of LDSC of the two populations. In the
second step, we fix c1, c2, and Ω at their estimates obtained with LDSC
and develop a variational expectation-maximization (VEM) algorithm
that only updates Σ. This algorithmic design not only improves the
convergence of the VEM algorithm by reducing the number of para-
meters but also offers a stable estimate of Ω.

In the following, we describe the VEM algorithm. Traditional
maximum likelihood approach estimates Σ by maximizing the mar-
ginal likelihood

Prðb̂jŝ,R; Ω̂,ĉ1,ĉ2,ΣÞ=
X
γ

Z Z
Prðb̂jŝ,R,γ,β,ϕ; ĉ1,ĉ2ÞPrðϕjΩ̂ÞPrðγÞPrðβjΣÞdβdϕ:

ð12Þ

However, due to the combinatorial nature of γ, the computational cost
for Equation (12) grows exponentially with the number of causal sig-
nalsK. To address this difficulty, wedevelop anefficient VEMalgorithm
to estimate Σ and approximate the posterior (11). To achieve this,
we first derive a lower bound of the logarithm of the marginal like-
lihood (12)

logPrðb̂jŝ,R; Ω̂,ĉ1,ĉ2,ΣÞ≥
P
γ

R R
qðγ,β,ϕÞ log Prðb̂,γ,β,ϕjŝ;Ω̂,ĉ1 ,ĉ2,ΣÞ

qðγ,β,ϕÞ dβdϕ

=Eq½logPrðb̂,γ,β,ϕjŝ,R; Ω̂,ĉ1,ĉ2,ΣÞ � logqðγ,β,ϕÞ�
� LqðΣÞ,

ð13Þ

where the inequality follows Jensen’s inequality and q(γ, β,ϕ) is a
variational approximation of the posterior (11). For convenience, we
denote b1k = γkβ1k and b2k = γkβ2k. By leveraging the decomposition in
model (2), we propose a factorizable formulation of the variational
approximation:

qðγ,β,ϕÞ=
YK
k = 1

qðb1k ,b2kÞqðϕÞ=
YK
k = 1

qðγkÞqðβ1k ,β2k jγkÞqðϕÞ, ð14Þ

where q(b1k,b2k) = q(γk)q(β1k, β2k∣γk) and q(ϕ) are the distributions of
{b1k,b2k} and ϕ under the variational approximation, respectively.
Unlike previous methods60,61 that require b1k and b2k to be fully fac-
torizable across their p elements, the variational approximation in
Equation (14) only requires that {b11,b21}, . . . , {b1K,b2K} are indepen-
dent and they are independent of ϕ23,24, which allows flexible depen-
dencies among the elements ofb1k andb2k.With the above factorizable
approximation given by Equation (14), it turns out that both q(γ, β,ϕ)
and LqðΣÞ can be analytically evaluated. We summarize the VEM
algorithm in the following:

E-step At the t-th iteration, the variational distributions are given
as

qðγk jΣðtÞÞ=Multð1,~πkÞ,

q
β1k

β2k

� �
jγkj = 1,ΣðtÞ

� �
=N ð~μkj ,~ΣkjÞ,

q
ϕ1

ϕ2

� �
jΣðtÞ

� �
=N ð~ν,~ΛÞ,

ð15Þ

where ~π = ½~πk1,:::,~πkp�T 2 ½0,1�p, ~Σkj 2 R2 × 2, ~μkj 2 R2, ~Λ 2 R2p× 2p, and
~ν 2 R2p are variational parameters. The variational parameters are

given as

~πkj = sof tmaxð� logðpÞ+ 1
2 log j~Σkjj+ 1

2
~μT
kj
~Σ
�1
kj ~μkjÞ,

~Σkj =
~σ2
kj,1 ~σ2

kj,12

~σ2
kj,2 ~σ2

kj,2

" #
=

r1jj
ĉ1 ŝ

2
1j

0

0 r2jj
ĉ2 ŝ

2
2j

2
64

3
75+ ðΣðtÞ

k Þ�1

0
B@

1
CA

�1

,

~μkj =
~μkj,1

~μkj,2

" #
= ~Σkj

b̂1j

ĉ1 ŝ
2
1j

b̂2j

ĉ2 ŝ
2
2j

2
664

3
775�

RT
1j

ĉ1 ŝ
2
1j

0

0
RT
2j

ĉ2 ŝ
2
2j

2
664

3
775 PK

k0≠1

~μk 0 j � ~πk0 + ~ν

 !0
BB@

1
CCA,

~Λ=

Ŝ
�1
1 R1 Ŝ

�1
1

ĉ1
0

0 Ŝ
�1
2 R2 Ŝ

�1
2

ĉ2

2
64

3
75 + Ω̂

�1 � Ip

0
B@

1
CA

�1

,

~ν = ~Λ

Ŝ
�2
1 b̂1
ĉ1

Ŝ
�2
2 b̂2
ĉ2

2
64

3
75�

Ŝ
�1
1 R1 Ŝ

�1
1

ĉ1
0

0 Ŝ
�1
2 R2 Ŝ

�1
2

ĉ2

2
64

3
75 PK

k = 1

~μkj � ~πk

 ! !
,

ð16Þ

where softmax denotes the softmax function tomake sure
Pp

j = 1
~πkj = 1

and⊗ is the Kronecker product. By combing Equations ((14),(15),(16)),
the lower bound (13) can be analytically evaluated as

LqðΣjΣðtÞÞ

=
PK
k

~μkj � ~πk + ~ν

 !T Ŝ
�2
1 b̂1
ĉ1

Ŝ
�2
2 b̂2
ĉ2

2
64

3
75� 1

2

PK
k

~μkj � ~πk + ~ν

 !T

×

Ŝ
�1
1 R1 Ŝ

�1
1

ĉ1
0

0 Ŝ
�1
2 R2 Ŝ

�1
2

ĉ2

2
64

3
75 PK

k

~μkj � ~πk+ ~ν

 !
�Pp

j

1
2ĉ1 ŝ

2
1j
r1jj
PK
k

~πkjð~μ2
kj,1+ ~σ2

kj,1Þ

�Pp
j

1
2ĉ2 ŝ

2
b,2j

r2jj
PK
k

~πkjð~μ2
kj,2 + ~σ2

kj,2Þ

+ 1
2

PK
k

ð~μkj � ~πkÞT
Ŝ
�1
1 R1 Ŝ

�1
1

ĉ1
0

0 Ŝ
�1
2 R2 Ŝ

�1
2

ĉ2

2
64

3
75ð~μkj � ~πkÞ

0
B@

1
CA

� 1
2p

P
k

P
j
Tr ðΣ�1

k ð~Σkj + ~μkj~μ
T
kjÞÞ � p

2 log j2πΩ̂j � 1
2
~νT ðΩ̂�1 � IpÞ~ν

� 1
2 Tr

1
ĉ1
Ŝ
�1
1 R1Ŝ

�1
1 0

0 1
ĉ2
Ŝ
�1
2 R2Ŝ

�1
2

2
64

3
75+ Ω̂

�1 � Ip

0
B@

1
CA~Λ

0
B@

1
CA

+
Pp
j

PK
k

~πkj log
1
p �

Pp
j

PK
k

~πkj log ~πkj +
1
2

Pp
j

PK
k

~πkjðlog j~Σkj j � log jΣk jÞ

+ 1
2 log j~Λj+ constant,

ð17Þ

where Tr(B) denotes the trace of the squarematrixB, and the constant
term does not involve Σ.

M-step We solve
∂Lq

∂Σk
=0 to obtain the update equation of Σk:

Σðt + 1Þ
k =

Xp
j

~πkjð~μkj~μ
T
kj + ~ΣkjÞ: ð18Þ

The above VEMalgorithmhas computational cost linear to the number
of causal variants K, allowing for detectingmultiple causal effects (e.g.,
K = 10) at a given locus.

Identification of causal variant and construction of credible set
After the convergence of VEM algorithm, we can obtain the approxi-
mated posterior probabilities qðγkÞ= ~πk , where ~πkj is the posterior
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probability that the k-th causal signal is contributed by the j-th SNP.
With the variational approximation given by Equation (15), we can
compute the posterior inclusion probability of SNP j as

PIPj = Prðγkj ≠0 for somekjb̂, ŝÞ≈1�
YK
k = 1

ð1� ~πkjÞ: ð19Þ

We can compute the local false discovery rate of SNP j as fdrj = 1 − PIPj
and prioritize the causal SNPs by controlling the false discovery rate.

The decomposition of causal effects (2) offers an opportunity to
characterize the set of SNPs that have high credibility to contribute to
an individual causal signal. Let M � f1,:::,pg be a subset of SNPs from
the target locus. A level-α credible set of a causal signal k, denoted as
CS(k, α), is defined as the smallest M with

P
j2M~πkj ≥α. A smaller size

of level-α credible set (e.g.,α = 0.9) indicates a higher confidenceof the
identified causal variants.

Influence and choice of K
The number of causal signals is usually unknown in practice. In XMAP,
wedonot requireK to be thenumber of causal SNPs in the target locus.
Instead, because the computational cost of our VEM algorithm only
increases linearly with K, we can set K to a reasonably large number
(e.g.,K = 10)withminor computational overhead.WhenK is larger than
the ground truth, the posterior probabilities in the excessive compo-
nents will be broadly distributed across all SNPs in the locus because
there is high uncertainty in the assignment of these causal effects.
Importantly, the polygenic component will account for the small
genetic effects, forcing the variance of excessive signals toward zero.
Therefore, it has very minor influence in prioritization of causal SNPs
when including extra causal effects than necessary. To exclude cred-
ible sets associatedwith redundant signal clusters, we follow SuSiE23 to
introduce the purity of credible sets. The purity of a credible set is
defined as the smallest absolute correlation between pairs of SNPs
within it. In XMAP, we consider the credible sets with purity less than
0.1 in all populations as redundant and discard the associated
credible sets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of LDL fromGLGCcanbedownloaded athttp://csg.
sph.umich.edu/willer/public/glgc-lipids2021/. Summary statistics of
LDL, height and blood traits from UKBB are available at https://
nealelab.github.io/UKBB_ldsc/index.html. Summary statistics of height
and blood traits from BBJ are available at http://jenger.riken.jp/en/
result. Summary statistics from the within-sibship GWAS are available
at https://gwas.mrcieu.ac.uk. The details of publicly available GWAS
summary statistics are summarized in Supplementary Table 2. LD files
for UKBB British-ancestry and African samples are available at https://
data.broadinstitute.org/alkesgroup/UKBB_LD. The scATAC-seq data-
set is available at https://github.com/GreenleafLab/MPAL-Single-Cell-
2019. The fine-mapping results generated in this study have been
deposited in https://github.com/YangLabHKUST/XMAP/tree/main/
results.

Code availability
The XMAP software and source codes in this study were publicly
available in GitHub repository of XMAP: https://github.com/
YangLabHKUST/XMAP62. The software is also provided in the Supple-
mentary Software 1. Example codes for using XMAP are available at
https://mxcai.github.io/XMAP-tutorial/Vignettes.html. Relevant codes
for reproducing the results of in this study are publicly available at
https://github.com/YangLabHKUST/XMAP/tree/main/results.
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