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Summary
The development of polygenic risk scores (PRSs) has proved useful to stratify the general European population into different risk groups.

However, PRSs are less accurate in non-European populations due to genetic differences across different populations. To improve the pre-

diction accuracy in non-European populations, we propose a cross-population analysis framework for PRS construction with both indi-

vidual-level (XPA) and summary-level (XPASS) GWAS data. By leveraging trans-ancestry genetic correlation, our methods can borrow in-

formation from theBiobank-scale Europeanpopulation data to improve risk prediction in thenon-Europeanpopulations.Our framework

can also incorporate population-specific effects to further improve construction of PRS.With innovations in data structure and algorithm

design, ourmethods provide a substantial saving in computational time andmemory usage. Through comprehensive simulation studies,

we show that our framework provides accurate, efficient, and robust PRS construction across a range of genetic architectures. In a Chinese

cohort, ourmethodsachieved7.3%–198.0%accuracygain forheight and19.5%–313.3%accuracygain forbodymass index (BMI) in terms

of predictive R2 compared to existing PRS approaches. We also show that XPA and XPASS can achieve substantial improvement for con-

struction of height PRSs in the African population, suggesting the generality of our framework across global populations.
Introduction

In the past 15 years, genome-wide association studies

(GWASs) have been performed on a wide spectrum of com-

plex traits anddiseases, providing anunprecedented oppor-

tunity to stratify the general population into different risk

groups.With the availabilityof large-scaleGWASdata, poly-

genic risk scores (PRSs) have been constructed to estimate

the genetic predisposition of complex phenotypes by col-

lecting contributions of many single-nucleotide polymor-

phisms (SNPs). The accurate construction of PRSs holds

promise in disease risk prediction, personalized healthcare

guidance, disease screening, and therapeutic interven-

tion.1 As one example, it was shown that an appropriately

constructed PRS can identify 8% of the population with

three-fold increased risk of coronary artery disease (CAD),

while monogenic mutations with comparable risk can

only cover 0.4% of the population.2 In terms of the area un-

der the receiver operator curve (AUC), the PRS’s accuracy in

predicting CAD onset can be as high as 0.81 based on

288,978 independent testing participants from the UK Bio-

bank.3 More recently, a significant improvement of AUC

(from 0.73 to 0.80) was achieved in glaucoma prediction

by incorporating PRSs in the traditional risk prediction

model without genetic information.4

Despite the great promise of PRSs, one major limitation

for its broader applications is the fact that most GWASs
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have been performed on samples with European (EUR)

ancestry.5–11 According to the GWAS diversity monitor,8

about 89% of GWAS participants to date are from Euro-

pean ancestry, while less than 8% of the participants are

from East Asian (EAS) ancestry and less than 0.45% are

from African (AFR) ancestry. Despite the wealth of GWAS

findings derived from Europeans, such an unbalanced

sample makeup across global populations may exacerbate

the disparities in genetic studies of non-Europeans.6

Recent studies have reported that the PRSs derived from

European samples are often less accurate when applied to

other populations.12,13 It remains unclear how much the

genetic discovery from the European population can be

transferred to non-European populations.

The challenges of transferable genetic studies arise from

three aspects. First, SNPs with biologically important roles

in the non-European populations may be neglected in

GWASs if they are absent or have very low allele frequencies

in Europeans.14,15 Second, the same SNPmay have different

effect sizes on the same phenotype across different popula-

tions,10,14 limiting the extrapolation value of GWAS find-

ings and the GWAS-derived PRS power in non-discovery

populations. Third, the linkage disequilibrium (LD) pat-

terns vary across populations,12,16–20 exacerbating the bias

in extrapolating the PRS for risk prediction.

PRSs canbe constructedbyusing either individual-level or

summary-level GWAS data. The individual-level methods
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construct PRSs by directly taking the genotype and pheno-

type data as their input. Well-known individual-level ap-

proaches include best linear unbiased predictor (BLUP),21

LASSO,22 BayesR,23,24 and BayesS.25 These methods have

their limitations in construction of PRS in the trans-ancestry

setting. First, they are often too time consuming ormemory

consuming to be applicable for the biobank-scale GWAS

data. While the recently proposed snpnet26 method imple-

ments LASSO in amemory-efficientmanner, it does not pro-

vide much gain in computational efficiency. Second, these

methods cannot be easily extended to integrate datasets

from heterogeneous ethnic backgrounds, since they do not

account for different genetic architectures. While the bivar-

iate BLUP (bvBLUP) is useful to reconcile the different ge-

netic effects, the most popular bvBLUP approach provided

by the GCTA software (GCTA-bvBLUP)27 is not scalable to

the biobank-scale dataset, and thus cannot fully utilize the

large-scale datasets to improve prediction performance.

Different from individual-level methods, summary-level

PRS methods use only summary statistics (e.g., z-scores or

marginal effect size estimates) that are widely available for

large-scale GWASs to approximate the prediction of individ-

ual-level methods. Therefore, they are more flexible, effi-

cient, and easily scalable to well-powered GWAS data.

Notable summary-level methods include PþT procedure,28

LDpred,29 and lassosum.30 By taking the advantage of large

sample size, existing PRS models have proved informative

in predicting genetic risk of European ancestry. However,

in view of the imbalanced population composition and

the different genetic structures across populations, existing

PRS approaches that do not take the heterogeneous genetic

architectures into account may not be easily applied in

trans-ancestry genetic prediction, leading to sub-optimal

prediction accuracy for under-represented populations.

The recently proposed MTAG approach31 provides an effec-

tivedata integration framework tocombineGWASsummary

data of multiple phenotypes, which has been proved useful

to improve power of associationmapping or construction of

PRSs in the same population. Despite the success of MTAG,

its performance in the construction of PRSs across popula-

tions remains largely unknown. To generate more accurate

PRSs by leveraging trans-ancestry information from large-

scale European GWASs, a pioneer approach, XP-BLUP,32

was recently proposed, which generalizes BLUP by intro-

ducing an extra variance component to model the effect

sizes of significant SNPs derived from well-powered GWASs

of the auxiliary population. The underlying assumption is

that the significant SNPs from the auxiliary population are

more useful for improving PRS accuracy in the under-repre-

sentedpopulations.However, asXP-BLUPonly incorporates

information from significant SNPs, its improvement in pre-

diction accuracy is limited. Therefore, there is a great need

for a comprehensive investigation on the transferability of

genetic study in the PRS construction among global

populations.

With our innovations in data structure and algorithm

design, XPA is able to handle bio-bank scale individual-level
The Ame
datasets and achieves the accurate prediction with the

computational cost nearly linear to the SNP number and

sample size. To demonstrate the effectiveness of our

methods, we considered the data collected from about

33,000 Chinese participants through a direct-to-customer

platform. For two anthropometric traits, height and body

mass index (BMI), we applied XPA to integrate the Chinese

training dataset (about 20,000 participants) with the UKBB

dataset and evaluated its predictionaccuracyonan indepen-

dent Chinese testing dataset (about 13,000 participants).

XPA achieved R2 ¼ 18.92% for height and R2 ¼ 6.06% for

BMI.Compared to the runner up,XPA improved the relative

prediction accuracy by 7.3% for height and 19.5% for BMI.

We also evaluated XPASS and other related methods that

only use summary statistics. Given the summary statistics

obtained from the same individual-level GWAS data as its

input, XPASS is slightly worse than XPA as expected, but it

is more broadly applicable when individual-level data are

not accessible. Since the ancestry profiles of Japanese and

Chinese are close to each other, summary statistics from a

larger East Asian GWAS, the BioBank Japan (BBJ) project,33,

34 was used as the training data to construct PRSs for testing

dataset. By integrating summary data from BBJ with UKBB,

XPASS was able to further improve the prediction accuracy

for height with R2 ¼ 19.54%, offering 12.7% relative

improvement compared to training with Chinese and

UKBB summary data. We also demonstrated that our pro-

posed methods was able to improve the construction of

PRSs in African population by integrating UKBB.
Material and methods

Method overview: XPA and XPASS
Due to the polygenicity of human complex traits, it is challenging

to construct accurate PRSs for an under-studied target population.

On one hand, the PRSs constructed using samples from EUR

ancestry becomes less accurate when it is applied to non-European

samples. On the other hand, the accuracy of PRSs constructed only

using samples from the under-represented target population is

limited by the sample size. By integrating small-scale or me-

dium-scale data from the target population with existing large-

scale data resources from EUR ancestry, our methods can robustly

improve the PRS prediction performance. The key idea of our

methods is based on the observed substantial genetic correlation

that largely remains for the same trait between populations due

to the shared genetic basis. Therefore, a large amount of informa-

tion in the biobank-scale data of EUR ancestry can be utilized for

risk prediction in the under-represented ancestry. By taking

individual-level GWAS data as input, XPA offers analytic estimate

for the SNP effect sizes using shared information across

populations. With our innovations in data structure and algo-

rithm design, such as Boolean representation35,36 and stochastic

approximation,37 the analytic SNP effect size estimates can be

computed efficiently, allowing us to construct PRSs in the target

population accurately. Because of the unavailability of individ-

ual-level data for many traits, we have extended XPA to XPASS

which requires only the GWAS z-scores and SNP correlation

matrices from the target and auxiliary populations, where the
rican Journal of Human Genetics 108, 632–655, April 1, 2021 633



SNP correlation matrices can be approximated using block-diago-

nal correlation matrices from a genotype reference panel of the

two populations. The computational complexity of XPA and

XPASS is approximately linear to the number of SNPs and sample

size, making our framework appealing in cross-population risk pre-

diction with biobank-scale data.
XPA statistical framework
Consider a GWAS dataset {G1,Z1,y1} from an under-represented

ancestry, where G1 is an n1 3 p genotype matrix, Z1 is an n1 3 c1
matrix collecting all covariates (e.g., age, sex, and principal com-

ponents), and y1 is an n1 3 1 phenotype vector. Due to the poly-

genicity of complex traits, the accuracy of risk prediction is limited

by the sample size. Now suppose a biobank-scale dataset

{G2,Z2,y2} from European ancestry is also available, where G2 is

an n2 3 p genotype matrix, Z2 is an n2 3 c2 covariate matrix, y2

is an n2 3 1 phenotype vector, and n2[n1. Since we are mainly

interested in improving risk prediction in the under-represented

population, we shall regard it as the target population and the bio-

bank-scale data from European ancestry as the auxiliary dataset. To

reconcile the difference of allele frequencies in the two popula-

tions, XPA assumes that the SNP effect sizes in both the target

and auxiliary populations increase as the allele frequencies

decrease38 and works with standardized genotypematrices. Specif-

ically, let g1j˛R
n1 and g2j˛R

n2 denote the j-th column of G1 and

G2, respectively. The corresponding column means and standard

deviations are given as g1j and g2j, s1j and s2j, respectively. Then

we have the corresponding standardized genotype matrices as

X1 ¼ ½x11;x12;.;x1p�˛Rn13p and X2 ¼ ½x21; x22;.; x2p�˛ Rn23p,

where the j-th column of X1 and X2 is given as x1j ¼ ðg1j �g1jÞ=
ðs1j ffiffiffi

p
p Þ and x2j ¼ ðg2j � g2jÞ=ðs2j

ffiffiffi
p

p Þ, respectively. In such a

way, each column of X1 and X2 has mean 0 and variance 1/p.

We relate genotypes and phenotypes using the following linear

models:

y1 ¼ Z1u1 þX1b1 þ ε;
y2 ¼ Z2u2 þX2b2 þ x;

(Equation 1)

where u1˛Rc1 and u2˛Rc2 are fixed effects of covariates, b1 ¼
½b1;1; b1;2;.; b1;p�T˛Rp and b2 ¼ ½b2;1; b2;2;.;b2;p�T˛Rp are vectors

collecting the SNP effect sizes from the two populations, and ε �
Nð0;s2

ε
In1

Þ and x � Nð0;s2x In2Þ are independent errors. Of note,

the two datasets do not share samples because they are from

different populations. Therefore, we can assume that the residual

vectors ε and x are independent. To model the polygenic effects

and their correlation between two populations, we introduce the

following probabilistic structures on b1 and b2: 
b1;j

b2;j

!
�Nð0;SbÞ ¼ N

  
0
0

!
;

 
s2
1 rs1s2

rs1s2 s2
2

!!
; j ¼ 1;.; p;

(Equation 2)

where s21 and s22 are the variance components characterizing the

polygenic effects in the two populations, respectively, r is the

trans-ancestry genetic correlation of the same trait across popula-

tion, and d :¼ rs1s2 is the corresponding covariance. XPA com-

putes the posterior mean of b1 by combining the target dataset

with the auxiliary dataset through their genetic correlation, and

therefore constructs an improved genetic prediction when the ge-

netic correlation r is nonzero. In contrast to XP-BLUP,32 XPA lever-

ages genome-wide information by using all SNPs rather than only

the top SNPs from the auxiliary population. While the inclusion
634 The American Journal of Human Genetics 108, 632–655, April 1,
of all SNPs from the biobank-scale auxiliary dataset introduces chal-

lenges in computation and data storage, we show that they can be

properly addressed by the novel data structure and algorithm

design in XPA.

XPAþ for capturing population-specific effects
The XPA framework can incorporate population-specific genetic

effects to improve prediction performance. To see this, we denote

Zc1˛Rn13c1 and Zc2˛Rn23c2 as matrices collecting all the covariates,

and Xl1˛Rn13l1 and Xl2˛Rn23l2 as the standardized genotype

matrices of SNPs with large effects in populations one and two,

respectively. By constructing Z1 and Z2 in Equation 1 as

Z1 ¼ ½Zc1;Xl1� and ½Zc2;Xl2�, respectively, we can re-write Equation

1 as:

y1 ¼ Zc1uc1 þXl1g1 þX1b1 þ ε;
y2 ¼ Zc2uc2 þXl2g2 þX2b2 þ x;

(Equation 3)

where g1˛Rl1 and g2˛Rl2 are fixed effects of the pre-selected SNPs,

uc1˛Rc1 and uc2˛Rc2 are fixed effects of covariates, and u1 ¼
½uT

c1;g
T
1 �

T
, u2 ¼ ½uT

c2;g
T
2 �

T
. SNPs in Xl1 and Xl2 are selected by

applying the PþT procedure to the GWAS summary statistics of

the target and the auxiliary populations, respectively. Because

l1 � n1 and l2 � n2 in practice, the vectors of fixed effects

g1˛Rl1 and g2˛Rl2 can be accurately estimated.

This flexible model structure can accommodate polygenic ef-

fects across population and large population-specific effects. On

one hand, the probabilistic structures of b1 and b2 capture the

polygenic effects that are correlated between populations, allow-

ing the auxiliary samples to be effectively utilized. On the other

hand, g1 and g2 capture the large population-specific genetic ef-

fects, which further boost the prediction performance. We call

this extension of XPA as XPAþ. When no SNPs with large popula-

tion-specific effects are selected, XPAþ is equivalent to XPA. Once

the large-effect SNPs have been selected, the parameters can be

estimated in the same way as in XPA.

Parameter estimation in XPA
To obtain the posterior mean of b1, we first need to estimate the

unknown parameters fs21;s22;d;s2ε ;s2xg. For convenience, we define

y ¼
"
y1

y2

#
, Z ¼

"
Z1 0
0 Z2

#
, X ¼

"
X1 0
0 X2

#
, u ¼

"
u1

u2

#
, and Se ¼"

s2
ε
In1 0

0 s2x In2

#
. Themarginal distribution of y can be obtained by

combining Equations 1 and 2 and taking integration over b:

y�NðZu;UÞ; U ¼ X
�
Sb 5 Ip

�
XT þSe; (Equation 4)

whereXðSb 5 IpÞXT ¼
"
s21K1 dK12

dKT
12 s22K2

#
,K1 ¼X1X

T
1 ,K2 ¼X2X

T
2 ,

and K12 ¼ X1X
T
2 . To estimate unknown parameters fs21; s22; d; s2ε ;

s2xg, we get rid of the covariates by multiplying Equation 4 with

the projection matrix Mh

"
M1 0
0 M2

#
¼ In1þn2 � ZðZTZÞ�1ZT ,

which leads to My � Nð0; MXðSb 5 IpÞXTMþMSeÞ. For

convenience, we use ~A to denote MA for any matrix A

involved in our notation, hence we have

~y � Nð0; ~UÞ; where ~U ¼ ~XðSb 5IpÞ ~XT þ ~Se: The method of mo-

ments (MoM) offers a computationally efficient estimator of

q ¼ fs21; s22; d;s2ε ;s2xg bymatching the second-order moment based
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on the criterion of least-squares: argminq

������~y~yT � ~U
���j2F . Taking de-

rivatives of the objective function w.r.t q and setting them to

zero leads to the estimating equations (see Appendix A):
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(Equation 5)
The bottle neck of solving Equation 5 is computing the traces

of squared kinship matrices, which has a computational

complexity Oðmaxðn1;n2Þ2pÞ. This computational overhead can

become very large when dealing with biobank-scale data. Instead

of computing the traces exactly, we apply a stochastic approxima-

tion to derive unbiased estimates of the trace terms.37 Given a

matrix A˛Rn3n and a vector of random variables d˛ Rn with

EðdÞ ¼ 0 and CovðdÞ ¼ In, we have the identity EðdTAdÞ ¼
trðAÞ. Using this identity, we can construct the following

estimates:

LB1h
d

tr
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�
¼
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tr
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XB
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k ~X1
~X
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where d1;.;dB are B random vectors drawn independently from

a distribution with zero mean and identity covariance matrix Ip.

The stochastic approximation in Equation 6 requires a computa-

tional complexity of Oðmaxðn1;n2ÞpBÞ. In practice, we found that

the traces can be effectively approximated with B � 50. Replacing

trð~K2

1Þ, trð~K
2

2Þ, and trð~K12
~K
T

12Þ by LB1
, LB2

, and LB12
, respectively,

we obtained bq ¼ S�1q. Then heritablities of the given phenotype

in the target and auxiliary populations are estimated as bh2

1 ¼ bs2

1bs2

1þbs2

ε

and bh2

2 ¼ bs2

2bs2

2þbs2

x

, respectively. The shared genetic basis between

the two populations can be quantified by the estimated trans-

ancestry genetic correlation, computed as br ¼ bdbs1bs2

, which is the

key to utilizing information from the biobank-scale EUR data

for risk prediction in the target population.
The Ame
PRS construction in XPA
Given the estimated parameters bq ¼ fbs2

1;bs2
2;
bd;bs2

ε
;bs2

xg, the fixed ef-

fects in Equation 1 are estimated by:
buh

24 bu1bu2

35 ¼ �ZT bU�1
Z
��1

ZT bU�1
y; (Equation 7)

where bU ¼ XðbSb 5 IpÞXT þ bSe; bSb ¼
24 bs2

1
bdbd bs2
2

35;
bSe ¼

24 bs2
ε
In1 0

0 bs2
x In2

35
.

The posterior mean of b1 can be derived as (see Appendix A):

bmXPA
1 ¼

" bs2
1X1bdX2

#T264bs2

1X1X
T
1
þbs2

ε
In1bdX1X

T
2bdX2X

T
1
bs2

2X2X
T
2
þbs2

x In2

375
�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bU�1

˛Rðn1þn2Þ3 ðn1þn2Þ

24y1 � Z1 bu1

y2 � Z2 bu2

35:

(Equation 8)

Obviously, when the genetic correlation rs0 (i.e., ds0), infor-

mation could be borrowed from the auxiliary population to the

target population to improve the posterior mean estimates.

Finally, to obtain the effect size of dosage genotypes ~mXPA
1 ˛Rp,

we need to re-scale the posterior mean by ~mXPA
1j ¼ bmXPA

1j =ðsj ffiffiffi
p

p Þ,
for j ¼ 1;.;p. When a new observation of genotype g1;new˛R

p is

available, the associated PRS can be computed by its inner product

with ~mXPA
1 , i.e., PRSnew ¼ gT

1;new~m
XPA
1 . If the covariates of the new

observation z1;new˛Rc1 are also available, we can predict the

phenotype at its original scale by bynew ¼ PRSnew þ zT1;new bu1 �P
j

~mXPA
1j g1j.

For XPA þ, we note that by constructing Z1 ¼ ½Zc1;Xl1� and Z2 ¼
½Zc2;Xl2�, the effect sizes of the pre-selected SNPs g1 and g2 can be

estimated jointly withuc1 anduc2 in Equation 7, and the posterior

mean in the target population bmXPAþ
1 can be computed in the same

way as in Equation 8. Similarly, the posterior mean ~mXPAþ
1 should

be re-scaled in the same way as in XPA and the estimated effects of

large-effect SNPs should be re-scaled by ~gXPAþ
1j ¼ bgXPAþ

1j =ðsj ffiffiffi
p

p Þ, for
j ¼ 1;.; l1. Then, the PRSs associated with the new observation
rican Journal of Human Genetics 108, 632–655, April 1, 2021 635



g1;new is computed as PRSnew ¼ gT
l1;new~g

XPAþ
1 þ gT

1;new~m
XPAþ
1 , where

gl1;new˛R
l1 is the sub-vector of g1;new corresponding to the SNPs

with large effects.

Despite the simple form of Equation 8, it is highly nontrivial to

obtain the posterior mean in biobank-scale data due to the chal-

lenges in both data storage in computer memory and computa-

tion. To boost the computational speed, we solve the large-scale

linear system in Equation 8 (i.e., ðn1 þn2Þ3ðn1 þn2Þ) using the effi-

cient conjugate gradient (CG)method. Because the classical CG re-

quires storing the whole bU matrix, which is infeasible for bio-bank

scale dataset, we developed a memory-efficient strategy (as

described in the following section) for storing standardized geno-

type matrices, and designed a highly efficient CG algorithm (see

Appendix A). Our CG algorithm has the time complexity of

Oðpðn1 þn2Þðc1 þc2 þ1Þ ffiffiffi
k

p Þ, where k is the condition number ofbU. Because k is usually small, the CG algorithm offers substantial

computational improvement in solving the linear system.

Data storage for large genotype matrices in XPA
In practice, the sample size of the auxiliary dataset can be very

large (e.g., n2z400;000 for UKBB), producing both computation

and data storage problems. To address this difficulty, we apply

the memory-efficient Boolean representation proposed in our pre-

vious work BOOST35 and the hash table data structure36 to store

the standardized genotypes.

Suppose that we are handling a standardized biobank-scale geno-

type matrix of 400,000 3 3,000,000, the memory usage of storing

such a matrix in double-precision floating-point format is 8 bytes3

400;00033;000;000 ¼ 9:631012 bytes z8:7 Tb. Therefore,

directly storing such a large matrix is usually impractical. However,

we note that each genotype only takes 4 possible values even after

standardization:
0�gj

sj
,
1�gj

sj
,
2�gj

sj
, and ~gj, where gj is the mean geno-

type value at SNP j, sj is the standard deviation of the genotype j,

and ~gj is the value to be filled in for the missing genotypes. For

each SNP, we index the standardized genotype values using a Bool-

ean representation. Specifically, we can use 00 to index
0�gj

sj
, 01 to

index
1�gj

sj
, 10 to index

2�gj

sj
, and 11 to index ~gj. We then save 4

consecutive individual’s genotypes at a time using the 8-digit

Boolean representation, which has 28 ¼ 256 combinations. This

constructs a hash table of size 25634, where each cell contains a

standardized genotype value in double precision. The total size of

this hash table is 2563438 bytes ¼ 8,192 bytes. Finally, we need

to construct such a hash table for all 3,000,000 SNPs, which

amounts to 8,192 bytes 33,000,000 ¼ 24.576 Gb. In addition to

the hash tables, we need to save the Boolean representations for

retrieving genotypes, which takes 400,000 3 3,000,000 / 4 ¼ 3 3

1011 bytesz280 Gb. In total, thismemory-efficient storing strategy

requires only 305 Gb for storing the UKBB genotype matrix.

Constructing PRS using summary statistics by XPASS
We consider the datasets fz1;G1

0;Z1
0g and fz2;G2

0;Z1
0g from the

two populations. The vectors z1 ¼ ½z11;.; z1j;.; z1p�T˛Rp and

z2 ¼ ½z21;.; z2j;.; z2p�T˛Rp contain the z-scores derived from

the two populations, where z1j ¼ ðxT
1j
x1jÞ�1

xT
1j
y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2

1jðxT
1j
x1jÞ�1

q and z2j ¼

ðxT
2j
x2jÞ�1

xT
2j
y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2

2jðxT
2j
x2jÞ�1

q , bs2
1j and bs2

2j are the residual variance of regressing y1

on x1j and y2 on x2j, respectively. Following Vilhjálmsson
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et al.,29 we assume the z-scores are derived from GWAS

datasets with phenotype vectors y1 and y2 standardized to

have mean of zero and standard deviation of one. The first

few PCs of the reference genotypes from the two populations

are given in Z1
0˛Rm13c01 and Z2

0˛Rm23c02 . Similar to XPA, we first

standardize the reference genotype matricesG1
0 andG2

0 to obtain

the corresponding X1
0 and X2

0 that have column means zero and

variances 1/p.

In real applications, the individual-level GWAS data may not be

easily accessible. To effectively make use of publicly available

GWAS summary statistics, we extend the XPA method as XPASS

which requires only the z-scores from GWAS results and reference

genotypes from the target and auxiliary populations. For XPASS,

we consider the vectors z1 and z2 of the z-scores for p SNPs derived

from the target and auxiliary populations, respectively, and the m1

3 p matrixX1
0 andm2 3 pmatrix X2

0 being the standardized refer-

ence genotype matrices from the corresponding populations.

With these summary-level data, we show that XPASS approximates

the posterior mean of SNP effect sizes in XPA as (see Appendix A):

24 bmXPASS
1bmXPASS
2

35¼
26666666664

264n1
bR1 0

0 n2
bR2

375þ
2666666664

bh2

1

1� bh2

1

bh12

1�bh2

2

bh12

1� bh2

1

bh2

2

1�bh2

2

3777777775

�1

5Ip

37777777775

�126664
ffiffiffiffiffi
n1

p

r
z1ffiffiffiffiffi

n2

p

r
z2

37775;

where5 denotes the Kronecker product, bh2

1 and
bh2

2 are estimates of

heritabilities h2
1 and h2

2 for the two populations, respectively, bh12 is

the estimate of co-heritability h12 :¼ rh1h2 between two popula-

tions, and bR1 ¼ X0T
1 X0

1=m1 and bR2 ¼ X0T
2 X0

2=m2 are the LDmatrices

of target and auxiliary populations, respectively. The parameter esti-

mates bh2

1,
bh2

2, and
bh12 can be computed using the summary-level da-

tasets (AppendixA).39,40Again, the information is sharedacrosspop-

ulations throughthegenetic correlation. Inpractice,XPASS takes the

heterogeneous LD patterns into account by computing the LD

matrices using X01 and X02 from either subsamples of X1 and X2

or external reference genotypes from the two populations. Because

the LD between SNPs decreases exponentially with their distance,

we approximate the LD matrices using block diagonal matrices

by assuming the SNPs between LD blocks are approximately

independent.41 The heterogeneous LD patterns result in different

LD partitions across populations. Therefore, we build the approxi-

mated LD matrices using partitions derived from either the target

or the auxiliary population. The application of XPASS to real

datasets suggests thatourmethod is insensitive to thepartition strat-

egy. To obtain the dosage scale effect size, we compute ~mXPASS
1j ¼bmXPASS

1j =ðsj ffiffiffi
p

p Þ; j ¼ 1;.;p. When the genotypes of a new sample

is available, we can obtain the PRS by PRSnew ¼ gT
1;new~m

XPASS
1 .
XPASSþ for capturing large population-specific effects
Similarly to XPAþ, we extend XPASS as XPASSþ to incorporate

large population-specific effects to improve prediction perfor-

mance. We denote X0l1˛Rm13l1 and X0l2˛Rm13l2 as the standard-

ized genotype matrices collecting the columns of X01 and X02
that correspond to the SNPs with large effects, and zl1˛Rl1 and

zl2˛Rl2 as sub-vectors of z1 and z2 corresponding to the SNPs

with large effects, respectively. The large genetic effects can be esti-

mated by XPASSþ as (see Appendix A):
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; (Equation 9)
where bRl1 ¼ X0T
l1X0l1=m1 and bRl2 ¼ X0T

l2X0l2=m2 are the LD

matrices of large-effect SNPs and bRls1 ¼ X0T
l1X01=m1 and bRls2 ¼

X0T
l2X02=m2 are the SNP correlation matrices between large-effect

SNPs and all SNPs from the two populations, respectively. With

the estimated fixed effects given in Equation 9, the posterior

means can be computed as:
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ffiffiffiffiffi
n1

p

r
z1 � bRsl1bg1ffiffiffiffiffi
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p

r
z2 � bRsl2bg2

377775:
(Equation 10)

Finally, to obtain the effect sizes for the dosage genotypes, we re-

scale both the posterior mean and the estimated fixed effects by

~mXPASSþ
1j ¼ bmXPASSþ

1j =ðsj ffiffiffi
p

p Þ, for j ¼ 1;.; p and ~g1j ¼ bgXPASSþ
1j =

ðsj ffiffiffi
p

p Þ, for j ¼ 1; .; l1, respectively. When a new observation

with genotype g1;new˛R
p is available, its PRS can be computed as

PRSnew ¼ gT
1;new~m

XPASSþ
1 þ gT

l1;new~g
XPASSþ
1 , where gl1;new˛R

l1 is the

vector of dosage genotypes corresponding to the SNPs with large

effects.
Simulation design
We conducted a comprehensive simulation study to compare the

performance of XPA and XPASS with other PRS approaches for in-

dividual-level data and summary data, respectively. For individual-

level approaches, we investigated the prediction accuracy of XPA

and XPAþ in comparison with three scalable PRS models,

including BLUP and bvBLUP implemented in the GCTA,21

LASSO,22 and XP-BLUP.32 The BLUP and bvBLUP were fitted using

the GCTA software v.1.93 (GCTA-BLUP and GCTA-bvBLUP). The

LASSO was fitted using the R package glmnetPlus. For single-pop-
The Ame
ulation-base approaches, GCTA-BLUP and LASSO, we trained

themwith either only the target dataset or only the auxiliary data-

set. In addition, we trained GCTA-BLUP with the combined data-

set obtained by directly merging the target and the auxiliary data

(GCTA-BLUP-combine). For GCTA-bvBLUP, we followed the in-

struction from the GCTA forum for integrating two independent

samples. For XP-BLUP, we considered 6 settings of p value

threshold for selecting candidate SNPs from the auxiliary GWAS

results: 5 3 10�6, 1 3 10�6, 5 3 10�7, 1 3 10�7, 5 3 10�8, 1 3

10�8. We revised the original XP-BLUP script to allow for the sup-

port of multi-threading computation. For XPAþ, we selected the

large-effect SNPs by applying the PþT procedure to the target data-

set with LD threshold r2 ¼ 0.1 and p value threshold 1 3 10�6.

For summary-level approaches, we compared XPASS and

XPASSþ with three alternative summary-level PRS models: PþT

procedure, LDpred-inf,29 and lassosum.30 As the performance of

non-infinitesimal LDpred is often similar to lassosum,30,42 we

only considered LDpred-inf, a special case of LDpred with closed

form solution. The LDpred-inf was computed using the ldpred

software v.1.0.11 with LD radius set at the recommended value

300,000/3,000 ¼ 100. For PþT procedure, we set the region size

as 1,000 kb and the LD threshold as 0.1 and considered 10 p value

thresholds according to a previous study:43 53 10�8, 13 10�6, 13

10�4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1. We used R package

ieugwasr to compute effect sizes in PþT procedure. The lassosum

was fitted using the R package v.0.4.4 with default tuning param-

eter settings. Because these summary-level methods cannot

handle multi-ancestry datasets, we trained these models with

either only the target dataset or only the auxiliary dataset. To

assess the prediction utility of MTAG, we applied MTAG to

combine the datasets from the target and auxiliary populations,

and then applied LDpred-inf to construct PRS (MTAGþLDpred-

inf). For XPASSþ, we selected the large-effect SNPs by applying

the PþT procedure to the target dataset with LD threshold r2 ¼
0.1 and p value threshold 1 3 10�6.

To mimic realistic LD patterns, we used the genotypes from the

Chinese and UKBB samples to generate the target and auxiliary in-

dividuals, respectively. For the target population, 5,000 samples

were randomly drawn from the Chinese dataset. For the auxiliary

population, we explored seven different sample sizes using
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random samples from the UKBB dataset: 0, 5,000, 10,000, 30,000,

50,000, 70,000, and 90,000. We included 300,000 SNPs in total by

selecting the first 30,000 SNPs from each of chromosomes 1 to 10.

Given these SNPs, we simulated their effect sizes with heritability

h2
1 ¼ h2

2 ¼ 0:5 and generated the phenotypes in both populations.

To investigate a wide spectrum of genetic architectures, we varied

the proportion of non-zero genetic effects and the genetic correla-

tion between the two populations. Specifically, we set the propor-

tion of non-zero genetic effects to be 0.9, 0.01, or 0.001, corre-

sponding to the highly polygenic scenario, the moderately

sparse scenario, and the sparse scenario, respectively.

We considered three settings of the overall genetic correlation r:

0, 0.4, and 0.8, corresponding to no, moderate, and high

genetic correlation, respectively. As the effect sizes may not be

correlated for all SNPs, we generated the nonzero effects by simu-

lating 80% of them from the bi-variate normal distribution

N

0BBBB@0;

266664
h2
1

p

rh1h2

0:8p

rh1h2

0:8p

h2
2

p

377775
1CCCCA and the rest from two independent

normal distributions N
 
0;

h2
1

p

!
and N

 
0;

h2
2

p

!
for populations

one and two, respectively, where p is the number of nonzero ef-

fects. By the combinatorial configurations of the proportion of

non-zero effects and genetic correlation, nine scenarios were

considered in our analysis. To evaluate the prediction perfor-

mance, we sampled 3,000 additional individuals from the Chinese

dataset serving as the test set of the target population. For each

simulation setting, we computed the averaged prediction R2

from 10 replications.

Among the individual-level methods considered, XPA, GCTA-

BLUP, GCTA-bvBLUP, and XP-BLUP support multi-threading

computation. To examine the computational and memory effi-

ciency of these methods, we further evaluated their CPU time

andmemory usage when different numbers of SNPs were included

in the model: 100,000, 200,000, and 300,000. The analyses were

performed with 16 threads on the platform of Intel Xeon Gold

6152 CPU.
Application of XPA and XPASS to predict height and BMI

in the Chinese population
Following the simulation studies, we applied XPA and XPASS to

construct PRSs for height and BMI in the Chinese population by

integrating European samples from UKBB and Asian samples

from Chinese cohort and BBJ. In the individual-level PRS analysis,

we split the Chinese data into the training and testing sets and

only included the SNPs overlapping with UKBB. For height, we

used 21,069 samples for training and held out 11,852 samples

for testing. After quality control and overlapping, 3,776,575

SNPs were used to fit the model. For BMI, we used 18,575 samples

for training and 10,572 for testing. After quality control and over-

lapping, 3,777,871 SNPs were used to fit the model. For Chinese

population, we included age, sex, and first 10 principal compo-

nents as covariates. For UKBB, we used the top 20 principal com-

ponents, age, squared age, sex, genotyping arrays, and sequencing

platforms as covariates.

To benchmark the performance of XPA and XPAþ with existing

approaches, we compared the predictive R2 of XPA and XPAþ with

six other PRS models. Four of the six methods are designed only

for single population analysis, including BLUP, which serves as a
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baseline model; snpnet, a memory-efficient LASSO implementa-

tion for large-scale genetic prediction based on R packages glmnet-

Plus and glmnet;26 BayesR, a hierarchical Bayesian mixture

model;23,24 and BayesS, which accounts for the impact of natural

selection.25 We trained all these four models on the Chinese data-

set, and additionally trained BLUP on the UKBB dataset using our

efficient implementation. The fifth method, GCTA-bvBLUP, was

trained with all Chinese samples and 150K subsamples randomly

drawn from the UKBB dataset because the large memory require-

ment of GCTA-bvBLUP makes it infeasible to include more

UKBB samples (see the results section for details).We also included

a recently proposed approach for cross-population prediction,32

XP-BLUP, in our comparison. We implemented the conventional

BLUP method in our XPA software, making it more efficient and

scalable to biobank-scale data. Since parameter-tuning is required

in snpnet, we randomly took one-third of training samples as vali-

dation set and fitted the LASSO model on the rest of the training

samples. The GCTB v2.0 was used to fit the BayesR and BayesS

models with 25,000 MCMC iterations in total and 5,000 burn-in

iterations. We set the initial value of heritability at 0.3 for height

and 0.15 for BMI. In BayesS, we set the initial value of the propor-

tion of non-zero effects at 0.05 for both height and BMI. The XP-

BLUP requires a list of candidate SNPs selected from the UKBB

GWAS results by taking a threshold of p values. We considered

eight thresholds for selecting SNPs: 5 3 10�6, 1 3 10�6, 5 3

10�7, 1 3 10�7, 5 3 10�8, 1 3 10�8, 5 3 10�9, and 1 3 10�9. After

tuning, the optimal thresholds were found at 1 3 10�8 and 5 3

10�7 for height and BMI, respectively. For XPAþ, we set the LD

threshold at r2 ¼ 0.1 and the p value threshold at 5�8.

In the summary-level PRS analysis, we obtained the summary

statistics of the Chinese dataset and UKBB using the BOLT-LMM

software36 and additionally included summary statistics from

BBJ (�170,000 Japanese samples)33,34 as an alternative training

data from the target population. We took the intersection of

SNPs in the Chinese dataset, UKBB and BBJ, leading to

3,621,504 SNPs to be included in height and 3,562,502 SNPs to

be included in BMI, respectively. We first randomly sub-sampled

2,000 individuals form both UKBB and the Chinese dataset as

the LD reference panels for the two populations.

Here we mainly compared XPASS and XPASSþ with LDpred and

PþT because other related methods with different assumptions

on effect sizes, such as SBayesR,43 are expected to have very mi-

nor improvement, as shown in the aforementioned individual-

level analysis. Because LDpred and PþT were developed for sin-

gle-population analysis, we considered two ways for training

the PRS models. The first way was to train the models separately

using the Chinese cohort, BBJ, or UKBB. The second way was to

first combine the target and auxiliary datasets using MTAG and

then train the models with the combined datasets. When

MTAG was applied, a covariance matrix of the estimation error

should be first constructed and provided as an input.31 Because

the two datasets were from different populations, we applied

LD score regression to estimate the intercepts of the Chinese

cohort and UKBB summary datasets with their corresponding

reference genotypes, respectively. After that, the estimated inter-

cepts were used to construct the diagonal elements of the covari-

ance matrix. The off-diagonal elements of the covariance matrix

were set to zero because there was no sample overlap between

populations. For XPASS and XPASSþ, we considered two configu-

rations of the training sets, i.e., Chinese þ UKBB and BBJ þ
UKBB. Assuming only the SNPs within the same LD block are

correlated, XPASS approximates the LD matrices by partitioning
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the genome into nearly independent blocks. Because the LD

block partition is not aligned in EAS and EUR,41 we used the

LD block partition derived from both EAS and EUR to construct

PRS and then evaluated the sensitivity of PRS to the two of LD

block partition strategies.

Because both LDpred and PþT have tuning parameters, we

considered a number of parameter settings and determine the

optimal values by evaluating prediction performance on the test

set. For LDpred, we considered nine settings of the proportion of

non-zero effects: 1 3 10�4, 5 3 10�4, 1 3 10�3, 5 3 10�3, 1 3

10�2, 53 10�2, 13 10�1, 53 10�1, and 1. For height, the optimal

values turned out to be 5 3 10�2 in Chinese, 1 in BBJ, 1 in UKBB,

10�1 in MTAG-Chinese, and 1 in MTAG-UKBB (Figures S25 and

S29). For BMI, the optimal values were 1 3 10�3 in Chinese, 5 3

10�1 in BBJ, 1 in UKBB, 5 3 10�1 in MTAG-Chinese, and 1 in

MTAG-UKBB (Figures S26 and S30).

For PþT procedure, we set the LD threshold at r2 ¼ 0.1 and

considered ten settings of the proportion of p value threshold:

5 3 10�8, 1 3 10�6, 1 3 10�4, 1 3 10�3, 1 3 10�2, 5 3 10�2,

13 10�1, 23 10�1, 53 10�1, and 1. For height, the optimal values

turned out to be 13 10�4 in Chinese, 13 10�3 in BBJ, 13 10�4 in

UKBB, 5 3 10�2 in MTAG-Chinese, and 1 3 10�2 in MTAG-UKBB

(Figures S25 and S29). For BMI, the optimal values were 1 3 10�6

in Chinese, 53 10�2 in BBJ, 13 10�2 in UKBB, 13 10�1 inMTAG-

Chinese, and 1 3 10�2 in MTAG-UKBB (Figures S26 and S30).

Since the parameter tuning process involved the testing data,

the performance of LDpred and PþT reported here could be

slightly optimistic.

When XPASSþ was applied, we set the LD threshold r2 ¼ 0.1 and

varied the p value threshold at {10�5,10�6,10�7,10�8} to include

large population-specific effects. The selected SNPs are treated as

covariates only in the target population. As shown in Figure S33,

the prediction performance of XPASSþ was insensitive to the p

value threshold. Therefore, we reported the results obtained with

p value threshold at 10�6 and used 10�6 as the default setting in

the XPASS software.

We used the prediction R2 to examine the prediction perfor-

mance. Given a test set fynew;Gnew;Znewg, we used the predictive

R2 to evaluate the performance of PRS. The PRS for the testing sam-

ples is constructed by PRSnew ¼ Gnew~m1, where ~m1 is the posterior

mean of the effect sizes on the dosage genotypes. Then, the predic-

tive R2 of PRS was defined as the squared correlation between

PRSnew and the residual obtained by regressing ynew on Znew, de-

noted as yres:

R2
PRS ¼ corr

�
yres;PRSnew

�2
:

When the covariates were taken into account, XPA generated

prediction on the original scale of phenotype: bynew ¼ PRSnewþ
Z1;new bu1 �

P
j

~mXPA
1j g1j. In this case, we evaluated the R2 by

computing the squared correlation between ynew and bynew:

Rby 2 ¼ corr

�
ynew; bynew

�2

:

Collection, genotyping, and imputation of Chinese

sample
To evaluate the prediction performance of our framework, we have

collected genotypes of Chinese individuals from theWeGene plat-

form and participants have signed the consent form. The study
The Ame
was reviewed and approved by the Committee on Research Prac-

tices of HKUST in strict compliance with regulations regarding

ethical considerations and personal data protection. To comply

with the regulations of the Human Genetic Resources Administra-

tion of China (HGRAC), all Chinese genotypic and phenotypic

data were processed and analyzed in a server located in Shenzhen,

China. Researchers who request access to the summary statistics

from the Chinese samples must get permission from Ministry of

Science and Technology of the People’s Republic of China.

DNA extraction and genotyping were performed on saliva sam-

ples. A total of 35,908 Chinese participants were genotyped on

the Illumina or Affymetrix platforms. Among all participants,

21,830 were genotyped on the Affymetrix WeGene V1 Arrays

covering 596,744 SNPs at the WeGene genotyping center, Shenz-

hen. The WeGene V1 Array optimized the identification of all

known paternal and maternal lineages through adding EAS-rele-

vant 18,963 Y chromosome and 4,448 mtDNA phylogenetic

SNPs.44 The remaining 14,078 individuals were genotyped on Il-

lumina WeGene V2 Arrays with a total of about 700,000 SNPs at

the WeGene genotyping center, Shenzhen. The WeGene V2 array

was designed based on the Illumina Infinium Global Screening

Array.

Imputation of unobserved genetic variants was performed using

the 1000 Genomes Project Phase 3 reference panel.15 All datasets

were phased by SHAPEIT245 and imputed by IMPUTE246 using

regular steps and parameters. SNP-level (INFO score>0.5) and ge-

notype-per-participant-level (genotype probability>0.9) filters

were used to exclude poorly imputed variants.
Sample description of the Chinese cohort
The 35,908 genotyped Chinese participants in the Chinese cohort

cover 33 out of 34 administrative divisions and 43 out of 56 ethnic

groups in China, with the majority of samples from the South-

eastern area (Figure S2). Among the 28,796 participants with

self-reported ethnic information, there are 26,953 (93.6%) Han

Chinese, 440 (1.5%) Manchu, 385 (1.3%) Hui, 201 Mongols

(0.7%), and 817 (2.8%) from other minority ethnic groups.

To explore the population structure of the Chinese cohort, we

first combined genotypes data from the Chinese cohort and the

1000 Genomes Project and performed a principal component

analysis (PCA). As shown in Figure S2, the Chinese samples are

overlapped with EAS from the 1000 Genomes Project, while its

variance is larger because it is comprised of both Han Chinese

and multiple minority groups. We then carried out PCA within

Chinese to study differentiation across minority ethnic groups

in China. Since the Han Chinese dominates the sample makeup,

directly applying PCA to all samples fails to capture the variation

among minority groups. Therefore, we first obtained the PC load-

ings from a subset of samples that included 500 randomly selected

Han Chinese (roughly matching the number of Manchu people)

and then computed the PC scores of all samples using these PC

loadings (Figure S2). The first two principal components represent

the latitudinal and longitudinal differentiation behind Chinese

population structure. The Han Chinese differs substantially along

the latitudinal gradient, while less differentiation is found along

the longitude direction, which is consistent with previous re-

ports.47–49 Among the minority ethnic groups, Manchus are

genetically closest to the Han Chinese in the northeastern China.

In the same area, Koreans in China are more distant to Han Chi-

nese compared to Manchus. The most differentiated groups are

Mongols, Hui, and Tibetan from the northwestern area. In the
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South China, Zhuang people also differ substantially from Han

Chinese.

We considered two anthropometric phenotypes in our analysis,

height and BMI. After quality control of genotype and phenotype

data (see supplementary note), there were 32,921 samples with

self-reported height and 29,147 samples with BMI computed

from height and weight. For both phenotypes, there are slightly

fewer males than females (15,406 compared to 17,515 for height

and 13,721 compared to 15,426 for BMI). The overall distributions

of height and BMI are summarized in Figure S1. Regarding the geo-

metric distribution, the Northern Chinese are generally higher in

both males and females (Figures S2 and S4). A similar latitudinal

differentiation is observed in BMI, where the individuals from

the north have higher obesity indices than those from the south

(Figures S2 and S6). Besides, the older people are generally shorter

and tend to have higher BMI (Figures S5 and S7).
Sample description of UKBB data
The UKBB genotype and phenotype data were obtained from the

UK Biobank Access Management System (see web resources). We

used the measured height phenotype extracted from Data Field

50 and the BMI value constructed from height and weight from

Data Field 21001. To restrict the samples within EUR ancestry,

we identified the individuals with self-reported ethnic background

as ‘‘white’’ in Data Field 21000 and included only these samples for

analysis. After phenotype and genotype quality control (see sup-

plemental note), the UKBB data contain genotype information

of 3,776,575 SNPs for 429,312 individuals in the analysis of height

and 3,777,818 SNPs for 428,864 individuals in the analysis of BMI.

We obtained the summary statistics of the UKBB datasets using the

BOLT-LMM software36 with age, squared age, sex, and the first 20

genomic PCs as covariates. The same set of covariates was included

in the construction of PRS when applying XPA.
Sample description of GWAS data from African

population
To demonstrate the generality of our framework to other popula-

tions, we applied XPA and XPASS to twoGWAS datasets comprising

thousands of samples from African ancestry: Institute for Personal-

ized Medicine (IPM) BioMe biobank10 (phs000925.v1.p1) and

UKBB. IPM BioMe biobank aimed to study clinical care processes,

with 28% samples of which were African Americans. The African

participants from the IPM BioMe cohort were genotyped on Illu-

mina Human OmniExpressExome Chip with a total of about

500K SNPs that passed an initial quality control (QC) process.

Imputation of unobserved genetic variants was performed using

the 1000 Genomes Project Phase 3 reference panel. All datasets

were phased by SHAPEIT2 and imputed by Minimac446,50 using

regular steps and default parameters.

After removing ancestry and phenotype outliers and samples

with ambiguous sex (see supplemental note), 5,491 confirmed Af-

rican participants from IPM were included in our study. For UKBB,

3,323 participants with self-reported African ancestry were also

included, after the same procedure of sample QC, 2,931 samples

remained for our analysis. By projecting the genotypes of IPM

and UKBB samples to the PC coordinates derived from the 1000

Genomes Project, we found that the Africans from both datasets

overlapped with the AFR samples from the 1000 Genomes Project

(Figure S3). We observed similar phenotypic distributions for

height between IPM and UKBB Africans, before or after we re-
640 The American Journal of Human Genetics 108, 632–655, April 1,
gressed the covariates (e.g., age, squared age, sex, first 20 genomic

PCs) out.

To evaluate the performance of PRS approaches, we combined

the African samples from IPM and UKBB, leading to a total of

8,422 African samples with 2,690,737 overlapping SNPs. Then,

we randomly selected 1K samples as testing data and used the re-

maining 7.4K samples as training data. We obtained the summary

statistics of the training set using the BOLT-LMM software36 with

age, squared age, sex, and the first 20 genomic PCs as covariates.

The same set of covariates was included in the construction of

PRSs when applying XPA.
Results

Simulation study

With data simulated as described above, we investigated

the prediction accuracy of XPA in comparison with alter-

native methods. To gain some intuition, we first consid-

ered the single-population-based methods, such as BLUP

and LASSO. These predictive models can be trained using

samples from either the target population or the auxiliary

population. The performance of BLUP and LASSO trained

on the target population can serve as the reference results

(dashed lines in Figure 1A). When the genetic correlation

was zero, the prediction accuracy of BLUP and LASSO

trained on the auxiliary dataset could not be improved

regardless of the auxiliary sample size. When the genetic

correlation became moderate (r ¼ 0:4) or strong (r ¼
0:8), the prediction accuracy of BLUP and LASSO trained

on the auxiliary dataset steadily improved as the auxiliary

sample size increased. It is worthwhile to note that BLUP

and LASSO trained on the auxiliary dataset were more ac-

curate than those trained on the target population when

the correlation was strong and the auxiliary sample size

was large.

Among the methods that combine both datasets, GCTA-

BLUP-combine had the worst performance in most set-

tings. As expected, when there was no genetic correlation,

the inclusion of auxiliary dataset led to worse performance

than using only the target dataset. When the genetic corre-

lation was nonzero, the predictive R2 first dropped and

then increased with increasing auxiliary sample size.

When the auxiliary sample size was large enough (e.g.,

n2 > 30K), the performance of GCTA-BLUP-combine grad-

ually converged to GCTA-BLUP. For GCTA-bvBLUP, it had

similar predictive R2 with XPA when the auxiliary sample

size was comparable with the target sample size (i.e.,

n2˛f0;5K; 10Kg). However, GCTA-bvBLUP does not ac-

count for the allele frequency difference between two pop-

ulations. Therefore, as we can expect, its prediction accu-

racy became worse than XPA when the auxiliary sample

size was large (i.e., n2> 30K). Between the cross-population

methods XPA and XP-BLUP, XPA was clearly the overall

winner, as shown in Figure 1A. When the genetic correla-

tion became moderate (r ¼ 0:4) or strong (r ¼ 0:8), the

prediction accuracy of XPA steadily improved as the sam-

ple size of auxiliary population increased, suggesting that
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Figure 1. Comparison of individual-level approaches in simulation studies
(A) Mean predictive R2 of XPA, XPAþ, GCTA-BLUP, LASSO, and XP-BLUP in each of nine simulation scenarios. The dashed lines show the
R2 obtained by training with target dataset only. For XPA, XPAþ, XP-BLUP, and GCTA-bvBLUP, the solid lines show the R2 obtained by
combining both target and auxiliary datasets. For GCTA-BLUP-combine, the solid line shows the R2 obtained by merging the target and
auxiliary datasets. For GCTA-BLUP and LASSO, the solid lines show the R2 obtained by training with auxiliary dataset only.
(B) CPU timings for XPA, XP-BLUP, and GCTA-BLUP are shown for increasing auxiliary sample size based on different numbers of SNPs.
(C) Memory usages for XPA, XP-BLUP, and GCTA-BLUP are shown for increasing auxiliary sample sizes based on different numbers of
SNPs. Results are summarized from ten replicates.
XPAwas able to leverage the trans-ancestry genetic correla-

tion for constructing PRSs. When either the genetic corre-

lation or the auxiliary sample size approached zero, XPA

reduced to BLUP which was trained on the target dataset,

as no information could be borrowed from the auxiliary

population in these cases. For XP-BLUP, it assumes that

the top SNPs from the auxiliary dataset are more likely to

have non-zero effects in the target population, but it

does not model the correlation of effect sizes between pop-

ulations. Therefore, it was worse than XPA in the polygenic

and moderately sparse settings, but had better perfor-

mance in the setting of highly sparse effects. However, in

the highly sparse setting, XPAþ extension achieved compa-

rable performance with XP-BLUP by incorporating large

population-specific effects. We also noted that the causal

SNPs between the target and auxiliary populations largely

overlapped in our simulation setting, which was preferred

by XP-BLUP. We expect the performance of XPAþ will be

better than XP-BLUP when the causal SNPs with large ef-

fects are not largely overlapping between the two

populations.

Among methods with the support of multi-threading

computation (Figure 1B), XP-BLUP had the lowest compu-

tational cost and memory usage, as its computation was

mostly based on the target dataset. While GCTA-BLUP,

GCTA-bvBLUP, and XPA all had increased computational
The Ame
cost as the scale of the auxiliary dataset became larger,

the CPU time of XPA was nearly linear in the sample

size, providing higher efficiency than GCTA-BLUP and

GCTA-bvBLUP when the auxiliary sample size was larger

than 50,000. In addition, because we have adopted amem-

ory-efficient strategy in storing genotypes, the memory

cost of XPA was also linear in the auxiliary sample size

and the number of SNPs. However, the memory cost of

GCTA-BLUP and GCTA-bvBLUP increased quadratically

with the sample size, limiting its usage in the biobank-scale

data analysis.

Next, we compared XPA with XPASS which takes the

summary-level data as its input. When the auxiliary data

are not available, XPA and XPASS reduce to their special

cases, BLUP and LDpred-inf, respectively. When the auxil-

iary sample size increased in our simulation, we measured

the relative improvement of individual-level and sum-

mary-level approaches as the difference of prediction R2

between XPA and BLUP, and that of XPASS and LDpred-

inf, respectively. As shown in Figure 2B, XPA was slightly

better than XPASS, suggesting that XPASS can provide

comparable prediction improvement using only sum-

mary-level datasets. The advantage of XPA became more

apparent as the auxiliary sample size increased, suggesting

the importance of developing methods to handle biobank-

scale individual-level data. These observations highlight
rican Journal of Human Genetics 108, 632–655, April 1, 2021 641
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Figure 2. Comparison of summary-level approaches in simulation studies
(A) Mean prediction R2 in each of nine simulation scenarios. Compared methods include XPASS, XPASSþ, LDpred-inf, MTAGþLDpred-
inf, PþT procedure, and lassosum. The dashed lines show the R2 obtained by training with target dataset only. For XPASS, XPASSþ, and
MTAGþLDpred-inf, the solid lines show the R2 obtained by combining both target and auxiliary datasets. For other methods, the solid
lines show the R2 obtained by training with auxiliary dataset only.
(B) Relative improvement in predictive R2 of XPA and XPASS as compared to GCTA-BLUP and LDpred-inf, respectively. Results are sum-
marized from ten replications. Error bars represent 51.96 of the standard error.
the value of XPA and XPASS in different practical scenarios:

XPASS provides well-powered PRSs using cross-population

information based on summary-level datasets while XPA

can achieve higher accuracy with the availability of indi-

vidual-level datasets.

As a promising approximation to XPA, XPASS also out-

performed existing summary-level PRS models. As shown

in Figure 2, XPASS had nearly the same performance with

LDpred-inf when either the genetic correlation was zero

or the auxiliary dataset was unavailable, consistent with

previous observations for individual-level methods. With

the availability of the auxiliary dataset and non-zero ge-

netic correlation, XPASS achieved the highest prediction

R2 among all compared methods in the polygenic and

moderately sparse settings. In the highly sparse setting,

its extension XPASSþ had the best performance when

the genetic correlation was high (r ¼ 0:8) and was compa-

rable to alternative approaches with smaller genetic corre-

lation (r ¼ 0 and 0.4). The prediction accuracy of both

XPASS and XPASSþ increased with larger auxiliary sample

size and stronger genetic correlation. Of note, the

improvement of XPASS had a very similar pattern in

both the sparse scenario and the polygenic scenario, sug-

gesting the robustness of XPASS to different genetic archi-

tectures.51 For models trained on the auxiliary dataset,
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PþT procedure had the lowest prediction accuracy, fol-

lowed by LDpred-inf. Because lassosum adopts an elastic

net model, it had comparable R2 to LDpred-inf in the

sparse scenario and outperformed LDpred-inf with larger

sample size.

Construction of PRS for the Chinese population by XPA

using the individual-level data from the Chinese cohort

and UKBB

To study the performance of XPA and XPASS in real appli-

cations, we applied our approaches to construct PRSs for

height and BMI in the Chinese population by integrating

Chinese and UKBB data. We first investigate the perfor-

mance of XPA using the individual-level data fromChinese

and UKBB. To benchmark the performance of XPAwith ex-

isting approaches, we compared the predictive R2 of XPA

with five other PRS models. XPA estimated the genetic cor-

relations between Chinese and UKBB as 0.71 for height

(bh2

Chinese ¼ 33:6% with SE ¼ 1.8%, bh2

UKBB ¼ 41:2% with

SE ¼ 0.7%) and 0.66 for BMI (bh2

Chinese ¼ 16:7% with SE ¼
1.7%, bh2

UKBB ¼ 18:1% with SE ¼ 0.1%), suggesting substan-

tial genetic sharing between the two populations. As sum-

marized in Figures 3A and 3D, regarding the overall perfor-

mance, XPA had the highest accuracy for both height and
2021
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Figure 3. Prediction performance of XPA and related individual-level methods for height and BMI in the Chinese population
Predictive R2 for height and BMI are shown in (A) and (D). Stratification ability of comparedmethods for height and BMI are shown in (B)
and (E). Error bars represent 51.96 of the standard error. (C) and (F) show the comparison of XPA with traditional risk factor models in
height and BMI.
BMI, with a substantial improvement compared to the

baseline BLUP model trained on the Chinese data only.

XPA outperformed the runner up (BLUP trained on

UKBB) by 7.3% and 19.5% improvements for height and

BMI, respectively. In contrast, both XP-BLUP and GCTA-

bvBLUP, the two methods that integrated Chinese and

UKBB datasets, had lower predictive R2 than XPA. XP-

BLUP was only slightly better than the methods trained

on the Chinese data, but inferior to both XPA and BLUP

trained on the UKBB only. This is because XP-BLUP only

includes information from the significant SNPs in UKBB

while XPA can borrow information from UKBB across the

whole genome. Due to the memory bottleneck, GCTA-

bvBLUP failed to include all UKBB samples, and so could

not further improve the prediction accuracy (see

Figure S23 for details of comparing the memory usage

and computational time). GCTA-bvBLUP took 75.8 h and

required 1.07 Tb to integrate 150K UKBB samples with all

Chinese samples and achieved its best performance for

constructing PRSs with predictive R2 ¼ 15.74%. In

contrast, XPA used only 54.5 h (including 9 h for loading

data, 3 h for estimating variance components, and 42.5 h

for computing the posterior means and estimating fixed ef-

fects) and 385 Gb to analyze all Chinese and UKBB samples

while achieving 20.2% and 46.4% improvement compared

to GCTA-bvBLUP for height and BMI, respectively. When

the population-specific large-effect SNPs were utilized by

XPAþ, we found the predictive R2 further increased to

19.72% in height and remained roughly the same with

XPA in BMI.
The Ame
In clinical applications, it is critical to stratify individuals

into different genetic risk groups. In our discussion, we use

‘risk’ as a generic term to describe a trait. To measure the

ability of risk stratification, we compared the observed

phenotypic values of individuals from the top PRS quan-

tiles with those from the reference group (i.e., 40%–50%

quantile in our analysis). For both height and BMI, XPA

was most effective in screening individuals with high ge-

netic risk (Figures 3B and 3E). Compared to their reference

groups, the individuals in the top 1% of PRS were 8.04 cm

(SE ¼ 0.54 cm) taller in height and 2.38 kg/m2 larger in

BMI. When XPAþ was applied, the stratification ability

was further improved, with 8.27 cm increased height and

2.67 kg/m2 larger BMI for the individuals in the top 1%

of PRSs. By incorporating covariates, such as age, sex,

and first 10 principal components, XPA can construct pre-

diction on the original phenotypic scale. Compared to the

risk prediction model using these covariates only, XPA

achieved a three-fold improvement of R2 in height and

two-fold improvement of R2 in BMI for both males and fe-

males. In terms of the square root of mean squared error

(
ffiffiffiffiffiffiffiffiffiffi
MSE

p
), XPA achieved a 10% improvement in height

and 4% improvement in BMI for both males and females

(Figures 3C and 3F), respectively. We also found XPA can

improve the stratification ability of PRSs for different

ethnic groups in the Chinese population (see supple-

mental note and Figure S24). These results suggest that

the prediction accuracy in a target population can be

greatly improved by XPA which can effectively incorpo-

rates trans-ancestry genetic information.
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Figure 4. Prediction performance of XPASS and related summary-level methods for height and BMI in the Chinese population
Compared methods include XPASS, XPASSþ, LDpred, and PþT. For LDpred and PþT, one of the five sets of GWAS summary statistics
were used as training set: Chinese only, BBJ only, UKBB only, improved Chinese and UKBB summary statistics obtained by
combining the two datasets using MTAG (MTAG-Chinese and MTAG-UKBB). Predictive R2 for height and BMI are shown in (A)
and (D). Panels in (A) and (D) represent the datasets used for training. Stratification ability of XPASS and LDpred for height (B)
and BMI (E). Error bars represent 51.96 of the standard error. The distributions of PRSs constructed by XPASS and LDpred for height
(C) and BMI (F).
Construction of PRSs for the Chinese population by

XPASS using the summary-level data from trans-

ancestry groups

When the individual-level GWAS data are not accessible,

XPASS can take summary statistics as its input to

construct PRSs. As estimated by XPASS, the genetic corre-

lation between Chinese and UKBB was 0.78 for height

(bh2

Chinese ¼ 35:0% with SE ¼ 2.4%, bh2

UKBB ¼ 43:6% with

SE ¼ 2.3%) and 0.68 for BMI (bh2

Chinese ¼ 16:7% with SE

¼ 1.9%, bh2

UKBB ¼ 19:4% with SE ¼ 0.7%), comparable to

those estimated by XPA. For the genetic correlations be-

tween BBJ and UKBB, the estimated genetic correlation

computed by XPASS was 0.71 for height (bh2

BBJ ¼ 36:7%

with SE ¼ 1.9%) and 0.68 for BMI (bh2

BBJ ¼ 13:0% with

SE ¼ 0.5%). Given the substantial genetic correlations,

XPASS could effectively leverage the UKBB summary

data to improve prediction accuracy in the Chinese

population. As summarized in Figures 4A and 4D, the

PRSs derived by XPASS largely outperformed LDpred

and PþT trained with the training set from a single

population. When XPASS was trained on Chinese-

þUKBB, the predictive R2 for height increased from

9.65% (LDpred trained on the Chinese data only)

to 17.6%. By either applying XPASSþ or using BBJþUKBB

as training set, the predictive R2 further increased

to 19.5%, achieving ð19:5%�15:1%Þ=15:1%z29%

improvement compared to the best method using a sin-

gle population. XPASS also outperformed MTAG with
644 The American Journal of Human Genetics 108, 632–655, April 1,
ð19:5%�15:7%Þ=15:7%z24% improvement in terms of

R2, when the MTAG output was used as training data

for LDpred and PþT. A similar trend of improvement

was observed for BMI (R2 ¼ 5.9% for XPASS compared

to R2 ¼ 2.16% for LDpred trained on Chinese and R2 ¼
5.15% for LDpred trained on MTAG-UKBB), although

the amount of improvement for BMI was less than that

of height. This can be attributed to the lower heritability

of BMI. We found that the choice of LD block partitions

in XPASS had little effect on its performance, suggesting

that XPASS is quite robust to the partitioning strategy.

When the PRS was used to stratify individuals, we found

XPASS is more effective in identifying the groups with

extreme genetic values (Figures 4B and 4E), consistent

with the analyses conducted on the individual-level data.

By comparing the PRS distributions (Figures 4C and 4F),

we observed that PRSs derived by XPASS from the larger

training sets often had broader distribution than those

derived by LDpred from the smaller training sets. We

note that this observation is consistent with the stratifica-

tion analysis, since the model with higher stratification

ability pulls individuals with extreme PRSs farther away

from its mean value.

Influence of the auxiliary sample size on prediction

performance

As we can observe in the simulation analyses, a large

auxiliary dataset is critical for the performance of cross-
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Figure 5. Influence of the auxiliary sample size on the prediction performance of XPA and XPASS for predicting height
Predictive R2 of XPA and XPASS are shown in (A) and (C). The corresponding trans-ancestry genetic correlations estimated by XPA and
XPASS in each replicate are shown in (B) and (D). We trained XPA and XPASS by integrating 21,069 Chinese training samples with
20,000–300,000 random subsamples drawn from UKBB, where samples from UKBB could be viewed as the auxiliary dataset. The results
are summarized from ten replications. Dashed horizontal lines in (A) and (C) mark the BLUP/LDpred-inf results obtained by using
20,000 samples from Chinese (red) and UKBB (cyan). Solid horizontal lines in (A) and (C) mark the results obtained by using all
UKBB samples with (red) or without (cyan) Chinese. Points P1�P4 in (A) represent the situations where the auxiliary sample size achieves
20,000 (P1), BLUP trained on about 50,000 UKBB samples achieves equivalent performance with that trained on 20,000 Chinese samples
(P2), XPA achieves identical performance with BLUP trained on all UKBB samples (P3), and XPA is trained with all UKBB samples (P4).
Points P5�P8 in (C) represent the similar situations for summary-level approaches XPASS and LDpred-inf. Error bars represent 51.96 of
the standard error.
population prediction. To systematically investigate how

the sample size of auxiliary dataset influences the predic-

tive performance of XPA, we randomly subsampled

20,000–300,000 UKBB individuals as an auxiliary dataset

to construct a PRS for height in the Chinese population

and evaluated the predictive R2. We also trained BLUP

using only auxiliary datasets as benchmark. As expected,

due to the population difference between EAS and EUR,

BLUP trained on 20,000 sample from UKBB was signifi-

cantly inferior to that trained on 20,000 samples from

Chinese (point P1 in Figure 5A). When the UKBB sample

size became larger than 50,000 (point P2 in Figure 5A), it

achieved better performance than the model trained on

20,000 samples from Chinese. In contrast, XPA provided

stable estimate of genetic correlation (Figure 5B) regard-

less of the auxiliary sample size, so it always outper-

formed BLUP and effectively improved the prediction

accuracy with the inclusion of more UKBB samples. It
The Ame
is also worth noting that XPA used only 20,000 Chinese

and 300,000 Europeans to achieve the comparable per-

formance with BLUP that was trained using all 430,000

European samples (point P3 in Figure 5A), highlighting

the importance of including samples from the target

population in PRS construction. Comparing XPASS

with its special case LDpred-inf29 led to similar conclu-

sions (Figures 5C and 5D). When 250,000 samples

were included in the auxiliary dataset, XPASS achieved

comparable performance with LDpred-inf using all

430,000 UKBB samples (point P7 in Figure 5C). When

XPASSþ was applied, it further improved the perfor-

mance and outperformed LDpred-inf when only

150,000 UKBB samples were included (Figure S34). By

contrasting Figures 5A and 5C, we found individual-

level approaches were generally better than summary-

level approaches, which is consistent with our simula-

tion results.
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Figure 6. Application of XPA and XPASS for predicting height in the African population
Trans-ancestry genetic correlation (A) and genetic covariance (B) among European, African, and East Asian populations for height. (C)
Prediction performance of XPA and BLUP for height measured by predictive R2. (D) Prediction performance of XPASS, LDpred, and PþT
for height measured by predictive R2. For LDpred and PþT, one of the four sets of GWAS summary statistics were used as training set:
African only, UKBB only, improved African and UKBB summary statistics obtained by combining the two datasets using MTAG
(MTAG-AFR and MTAG-UKBB). For XPASS, we used the LD reference from either AFR or EUR population to construct independent
LD blocks (AFR block and EUR block).
Construction of PRS for the African population by XPA

and XPASS

To demonstrate the generality of our framework to other

populations, we compared the prediction performance of

XPA and XPASS with existing approaches using GWAS

data from the African population. First, we estimated the

trans-ancestry genetic correlation among European, Afri-

can, and East Asian populations for height. Our results sug-

gest that trans-ancestry genetic correlations of East Asian

and European populations are often stronger than those
646 The American Journal of Human Genetics 108, 632–655, April 1,
of African and European populations (Figure 6A), consis-

tent with a previous report.52 To construct PRSs, we applied

XPA and XPASS to integrate 7.4K African training samples

with 430K European samples from UKBB. The prediction

accuracy was evaluated on the 1K testing African samples.

Clearly, both XPA (Figure 6C) and XPASS (Figure 6D) out-

performed BLUP and LDpred and effectively improved

the prediction accuracy with the inclusion of UKBB sam-

ples. The replication of better prediction performance by

combining African and well-powered auxiliary European
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populations reassures us that, despite the more significant

genetic distance, our XPA and XPASS framework still

achieved state-of-the-art performance when compared to

alternative methods.
Discussion

The genetic architectures of various human traits have been

mostly studied in samples with European ancestry, while

non-European populations are still under-represented.

Whether the genetic discoveries derived from Europeans

can be transferred to non-Europeans remains unclear. In

this study, we have proposed a unified framework for

cross-population analysis (XPA and XPASS) to improve ge-

netic prediction of under-represented populations by

leveraging their trans-ancestry genetic correlations with a

large and well-powered auxiliary GWAS dataset from

another population. By combining the individual-level

UKBB samples and Chinese samples, we were able to

construct improved PRSs for height and BMI in theChinese

population, demonstrating the utility of trans-ancestry ge-

netic prediction. We also showed that XPASS can achieve

comparable prediction performance while only requiring

summary-level data. When XPASS was trained using the

summary-level BBJ and UKBB data, it produced even better

prediction performance than XPA trained with the individ-

ual-level UKBB and Chinese data. As we do not have access

to the individual-level BBJ data, XPASS offers an effective

strategy to make use of existing data resources. We also

observed improved prediction accuracy of PRSs in the Afri-

can population when we applied XPA and XPASS to

combine AFR and EUR GWAS data, suggesting the general-

ity of our framework across global populations.WhenXPAþ
and XPASSþ were applied, the population-specific effects

can also be incorporated, leading to higher prediction accu-

racy in height. Because of the better performance and

robustness to the choice of p value threshold, we recom-

mend XPAþ and XPASSþ in practice.

Existing studies53,54 have established the connection

between the prediction accuracy of PRSs and various pa-

rameters from the theoretical perspective, including heri-

tability, sample size, genetic correlation, and the effective

number of chromosome segments. These theoretical

properties have been supported by practical evidence.

For example, Truong et al.55 showed that the prediction

accuracy of PRSs increased when individuals with

higher-level relatedness were included in the analysis,

which was due to the decreasing number of effective chro-

mosome segments. Our work mainly focuses on the side

of practice, aiming to develop a scalable and accurate

method for the construction of PRSs in the cross-ancestry

setting. We have observed that higher genetic correlation

and inclusion of more target samples in the training set

can improve prediction performance, which is consistent

with the theory.53
The Ame
In real applications, by taking the advantage of wide-

spread pleiotropy among phenotypes, many successful

multi-trait models56–58 have been developed to produce

powerful PRSs with increased prediction accuracy. While

these approaches have been widely used in risk prediction

within a single population, they may not be easily applied

to integrate datasets from multi-ancestry backgrounds,

since they do not take the heterogeneous genetic architec-

tures into account. Our XPA framework, as compared to ex-

isting multi-trait models, provides a scalable solution to

effectively combine multi-ancestry datasets by leveraging

the stable estimate of trans-ancestry genetic correlation

while accounting for the heterogeneous LD structure be-

tween populations. The success of XPA sheds light on the

transferable genetic basis among global populations and

demonstrates the benefits of integratingmulti-ancestry da-

tasets in genetic prediction.

While we have mainly focused on the anthropometric

traits in this study, it is worth noting that XPA and XPASS

can be applied to a wide class of phenotypes, such as com-

plex diseases andmolecular phenotypes. Due to the binary

nature of diseases, their relationships with genotypes are

often better captured by the liability threshold model

(LTM). When the individual relatedness is low, the uni-

variate linear mixed model (LMM) can be viewed as an

approximation of the LTM.27 A recent study59 found that

the bi-variate LMM can approximate the bi-variate LTM

and produce consistent genetic correlation estimate for bi-

nary responses, suggesting the potential of applying XPA

and XPASS to predict disease risks.

Our XPA framework needs more investigation in the

following directions. First, XPA could be improved by al-

lowing more flexible assumptions on SNP effect sizes.

XPA assumes that, for a given population, the variance of

the effect sizes of standardized genotypes is a constant,

implicitly assuming that the SNP effect sizes increase as

the allele frequencies decrease at the rate 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð1� f Þp

,

where f is the allele frequency (AF). This assumption was

also adopted in the previous trans-ancestry analysis.60

Some recent studies have suggested that the effect sizes

may not keep increasing when the allele frequency is small

due to the negative selection.25,61,62 It was shown that the

prediction can benefit from introducing a selection param-

eter in BayesS (Figure 3A).

Second, the trans-ancestry genetic correlation may not

be homogeneous across the genome. The differential selec-

tion pressure between populations can induce differences

in their AF.34,63 By sorting the SNPs according to the

normalized AF difference between EAS and EUR, we esti-

mated the genetic correlation of the effect sizes corre-

sponding to the SNPs with the largest AF differences. As

shown in the Figure S35, the trans-ancestry genetic corre-

lation decreases as the AF difference increases. To assess

the effect of AF difference on the prediction accuracy, we

extended the XPASS model to include an additional ge-

netic component that captures the effects of SNPs with

large AF differences across populations (see supplemental
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note). From our real data analysis, we did not observe sig-

nificant enrichment of heritability among these SNPs. As

a result, we did not obtain a better PRS by modeling the ef-

fect sizes of these SNPs as an additional variance compo-

nent in the extended model (see Table S1). Our results sug-

gest that modeling the effect sizes of SNPs with large AF

difference may not be the key to improve PRSs.

Third, the integration of multiple GWASs across popula-

tions may further improve the prediction accuracy of XPA

and XPASS. It has been shown that jointly modeling mul-

tiple genetically correlated phenotypes can produce more

accurate prediction within EUR population.56–58 By

applying XPASS to estimate genetic correlations for a

wide spectrum of phenotypes between EUR and EAS, we

found that many genetically correlated traits discovered

in EUR studies are replicated between EAS and EUR (sup-

plemental note). Therefore, when a number of correlated

phenotypes are simultaneously available in both popula-

tions, a more flexible model that jointly considers these

phenotypes may further increase the prediction power.

Fourth, functional annotations may also be included to

inform the prediction. The SNPs with biological functions,

such as gene regulatory elements,64–66 epigenomic regula-

tions,40,67,68 and tissue-specific functional pathways,

are usually enriched for the heritability of complex

traits.69–73 Recent studies suggest that leveraging the func-

tional annotations in prediction models trained on the

EUR datasets produced PRSs with higher accuracy in both

EUR74,75 and EAS,76 indicating the substantial overlap of

functionally important variants across populations.

Hence, integrating functional information to prioritize

biologically relevant SNPs in complex traits can potentially

increase the prediction accuracy of the XPA framework.
Appendix A

Derivation of normal Equation 5

Note ~y � Nð0; ~UÞ has its first-order moment as zero. Thus,

the MoM estimator is then obtained by matching the sec-

ond-order moment based on the criterion of least-squares:
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Taking derivatives of the objective function with respect

to q ¼ fs21; s22; d; s2ε ; s2xg and setting them to zero leads to

estimating Equation 5.
Derivation of posterior mean (Equation 8)

Given the estimates of parameters fbs2
1; bs2

2;
bd; bs2

ε
; bs2

xg and

fixed effects bu, the posterior means of b are given as:"
b1

b2

#�����Z1;X1;y1;Z2;X2;y2 � NðbmXPA;SÞ; (Equation A2)

with
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where bmXPA
1 and bmXPA

2 are the posterior means of b1 and

b2, respectively. Note that directly working on this form

of posterior mean mXPA requires solving a 2p32p linear

system, which is intractable since p is in the order of

millions. Here, we derive an equivalent form that com-

putes mXPA by solving only an ðn1 þn2Þ3ðn1 þn2Þ linear

system:
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granted by the Woodburry matrix identity. XPA computes

the posterior mean of the target population by:
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Computation of posterior means and fixed effects with

the CG algorithm

The fixed effects and posterior means are given as
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respectively. Both quantities involve solving the linear sys-

temsU ¼ bU�1
Z and v ¼ bU�1

y. Therefore, we can compute

the estimates of fixed effects and the posterior means at the

same time while only solving the linear systems once. Spe-

cifically, we first construct a working matrixW ¼ ½y;Z� and
apply the conjugate gradient approach to solve the com-

bined linear systems ½v;U� ¼ bU�1
W, as summarized in Al-

gorithm 1.
The Ame
At each iterationof theCGalgorithm,weneed tocompute

bUPj ¼ bU"P1j

P2j

#
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where P1j˛Rp and P2j˛Rp are column vectors. With entries
of X1 and X2 decoded from the Hash table, we first

compute XT
1P1j and XT

2P2j and then multiply X1 and X2

on their left to obtain the corresponding terms. This oper-

ation is highly efficient since it only involves matrix-vector

multiplication. The final time complexity of the CG algo-

rithm is Oðpðn1 þn2Þðc1 þc2 þ1Þ ffiffiffi
k

p Þ, where k is the condi-

tion number of bU. Because k is usually small, the CG algo-

rithm offers substantial computational improvement in

solving the linear system.

Assumptions for XPASS model

We consider the datasets fz1;G1
0;Z1

0g and fz2;G2
0;Z1

0g
from the two populations. The vectors

z1 ¼ ½z11;.; z1j;.; z1p�T˛Rp and z2 ¼ ½z21;.; z2j;.;

z2p�T˛Rp contain the z-scores derived from the two popula-

tions, where z1j ¼ ðxT
1j
x1jÞ�1

xT
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y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2
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q and bs2
1j

and bs2
2j are the residual variance of regressing y1 on x1j and

y2 on x2j, respectively. Following Vilhjálmsson et al.,29 we

assume the z-scores are derived from GWAS datasets with

phenotype vectors y1 and y2 standardized to have mean

of zero and standard deviation of one. The first few PCs

of the reference genotypes from the two populations are

given in Z1
0˛Rm13c01 and Z2

0˛Rm23c02 . Similar to XPA, we

first standardize the reference genotype matrices G1
0 and

G2
0 to obtain the corresponding X1

0 and X2
0 that have col-

umn means zero and variances 1=p.

Parameter estimation in XPASS

To derive the normal equations using the summary-level

datasets, we start by eliminating the sε and sx in Equation

5, which leads to
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Algorithm 1. Conjugate Gradient algorithm for solving ½v;U� ¼ bU�1
W

By dividing the three equations by n2
1, n

2
2 and n1n2, the

estimating Equation 5 became:
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derived from the assumption that xj has mean 0 and vari-

ance 1=p, and the approximation is granted by the assump-

tion that each SNP only contributes a small proportion of

the total phenotypic variance. Similarly, z2jz
xT
2j
yffiffiffiffiffiffiffi

s2y2
n
p

p . There-

fore, we can approximate the terms in the right-hand side

of Equation A4 by
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In the left-hand side of Equation A4, ~y1 and ~y2 are not

involved, and the terms involving ~X1 and ~X2 can be

approximated using the reference genotypes X1
0 and X2

0.

For example,
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can be approximated by
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0 ¼ M01X01ðM01X01ÞT and M01 ¼
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1 . Other terms in the left-hand side

can be approximated in the same way. Using these approx-

imations, the final normal equation is given as
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are heritabilities for the two populations, respectively,

and h12 :¼ rh1h2 is the co-heritability between two popula-

tions. Note that all terms in Equation A5 depend only on

the z-scores and reference panels. Solving Equation A5

leads to the parameter estimates fbh2

1;
bh2

2;
bh12g.

Given the parameter estimates fbh1; bh2; bh12g, the genetic

correlation can be estimated by br ¼ bh12=bh1
bh2. To test for

H0 : r ¼ 0 using summary statistics, we estimate the stan-

dard error of br by applying the jackknife resampling

method, with a leaving-one-chromosome-out strategy.
Derivation of Equations 9 and 10

With themodel in Equation 3, the estimates of fixed effects
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By taking the advantage of the Woodbury matrix iden-

tity to compute the matrix inversion of bU�1
, we obtain
2K
0T
12



m2

3777777777777775

2664 h2
1

h2
2

h12

3775¼

26666666666664

1

p

Xp
j¼1

z21j � 1

n1

1

p

Xp
j¼1

z22j � 1

n2

1

p

Xp
j¼1

z1jz2jffiffiffiffiffiffiffiffiffiffi
n1n2

p

37777777777775
; (Equation A5)

rican Journal of Human Genetics 108, 632–655, April 1, 2021 651



264 bg1bg2

375 ¼

0BBBBBBBBBBB@

24n1Rl1 0

0 n2Rl2

35�
24n1Rls1 0

0 n2Rls2

35

0BBBBBBBBBB@

266666666664

bh2

1

1� bh2

1

bh2

12

1�bh2

2

bh2

12

1� bh2

1

bh2

2

1�bh2

2

377777777775

�1

5Ip þ
24 n1R1 0

0 n2R2

35

1CCCCCCCCCCA

�1

24n1Rsl1 0

0 n2Rsl2

35

1CCCCCCCCCCCA

�1

0BBBBBBBBBBB@

264XT
l1yl1

XT
l2yl2

375�
24n1Rls1 0

0 n2Rls2

35

0BBBBBBBBBB@

266666666664

bh2

1

1� bh2

1

bh2

12

1�bh2

2

bh2

12

1� bh2

1

bh2

2

1�bh2

2

377777777775

�1

5Ip þ
24n1R1 0

0 n2R2

35

1CCCCCCCCCCA

�1

264XT
1y1

XT
2y2

375

1CCCCCCCCCCCA
;

24m1

m2

35 ¼

0BBBBBBBBBB@

266666666664

bh2

1

1� bh2

1

bh2

12

1�bh2

2

bh2

12

1� bh2

1

bh2

2

1�bh2

2

377777777775

�1

5Ip þ
24 n1R1 0

0 n2R2

35

1CCCCCCCCCCA

�1

24X1 0

0 X2

35T
2664y1 � Z1 bu1 �Xl1bg1

y2 � Z2 bu2 �Xl2bg2

3775;

(Equation A6)
where R1 ¼ XT
1X1=n1 and R2 ¼ XT

2X2=n2 are the LD

matrices of all SNPs, Rl1 ¼ XT
l1Xl1=n1 and Rl2 ¼ XT

l2Xl2=n2

are the LD matrices of large-effect SNPs, and Rls1 ¼ RT
sl1 ¼

XT
l1X1=n1 and Rls2 ¼ RT

sl2 ¼ XT
l2X2=n2 are the SNP correla-

tion matrices between large-effect SNPs and all SNPs

from the two populations, respectively.

With the reference genotype matrices, we can approxi-

mate the LD matrices in Equation A6 with R1z bR1 ¼
X0T

1 X01=m1, R2z bR2 ¼ X0T
2 X02=m2, Rls1z bRls1 ¼ X0T

l1X01=
m1, and Rls2z bRls2 ¼ X0T

l2X02=m2. In addition, the terms

involving y can be approximated by XT
l1yl1z

ffiffiffiffi
n1

p

q
zl1,

XT
l2yl2z

ffiffiffiffi
n2
p

q
zl2, XT

1y1z
ffiffiffiffi
n1

p

q
z1, and XT

2y2z
ffiffiffiffi
n2
p

q
z2, where

zl1˛Rl1 and zl2˛Rl2 are sub-vectors of z1 and z2 corre-

sponding to the large-effect SNPs. Replacing the relevant

terms with corresponding approximations leads to Equa-

tions 9 and 10.
Data and code availability

The publicly available GWAS summary statistics for esti-

mating genetic correlations were obtained from the links

summarized in Table S2. Access to genome-wide summary

statistics from the Chinese data has to be approved by the

contact authors (see Table S2). Researchers who wish to

gain access to the data are required to submit the data
652 The American Journal of Human Genetics 108, 632–655, April 1,
request by sending an email to the contact authors. GWAS

summary statistics from other studies can be accessed using

the links provided in Table S2. The UKBB data are available

through the UK Biobank Access Management System. The

IPM BioMe biobank data are accessible on dbGap with

accession number phs000925.v1.p1. The Cþþ software

for XPA and the R package for XPASS are available online.
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